Preparation, Characterization and Thermal Expansion of Pr Co-Dopant in Samarium Doped Ceria

DOI: 10.4236/ampc.2012.24B002   PDF   HTML     3,217 Downloads   4,856 Views   Citations

Abstract

The compositions Ce0.8-xSm0.2O2-δ(X=0, 0.02, 0.04, 0.06) were prepared through the sol–gel route. The effect of Pr addition on the crystal structure, densification and thermal expansion of Ce0.8Sm0.2O2-δ was studied. The phase identification and morphology was studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). X-ray diffraction analysis showed that all the samples exhibit a fluorite structure. The lattice parameters  were determined by X-ray powder diffraction. Lattice parameters and volume of the unit cell increases with Pr doping. Density of the all samples is more than 90% of theoretical density. The thermal expansion was measured using dilatometric technique in the temperature range 30–1000°C. It was observed that the thermal expansion increased linearly with increasing temperature for all the samples.

Share and Cite:

V. Venkatesh, V. Prashanth Kumar, R. Sayanna and C. Vishnuvardhan Reddy, "Preparation, Characterization and Thermal Expansion of Pr Co-Dopant in Samarium Doped Ceria," Advances in Materials Physics and Chemistry, Vol. 2 No. 4B, 2012, pp. 5-8. doi: 10.4236/ampc.2012.24B002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Xingbao Zhu, Zhe Lu, Bo Wei, Yaohui Zhang, Xiqiang Huang, Wenhui Su, Int J Hydrogen Energy, vol.35, 2010, pp. 6897-904.
[2] J. Nielsen, A Hagen, Y.L. Liu, Solid State Ionics, vol.181, 2010, pp. 517-24.
[3] Yicheng Liou, Songling Yang, J Power Sources, vol.179, 2008, pp.553-9.
[4] N.P. Brandon, S. Skinner, B.C.H. Steele, Annu. Rev. Mater. Res., vol. 33, 2003, pp. 183.
[5] B.C.H. Steele, Solid State Ionics, vol.129, 2000, pp. 95-110.
[6] C.M. Lapa, D.P.F. De Souza, F.M.L. Figueiredo, F.M.B. Marques. Int J Hydrogen Energy, vol.35, 2010, pp. 2737-41.
[7] S.Omer, E.D.Wachsman, J.C.Nino, Solid State Ionics, vol.178,2008, pp. 1890-7.
[8] S.Omer, E.D.Wachsman, J.C.Nino, Solid State Ionics, vol.177,2006, pp. 3199.
[9] H.Inaba, H.Tagawa, Solid State Ionics, vol. 83, 1996, pp. 1.
[10] N.Kim, BH.Kim, D.Lee, J.Power Sources, vol. 90, 2000, pp. 139.
[11] S.Lubke, H.D.Wiemhofer, Solid State Ionics, vol.117, 1999, pp. 229.
[12] V.Prashanth Kumar, Y,S.Reddy, G.Prasad, P.Kistaiah, C.Vishnuvardhan Redyy, Mater.Chem.Phys, vol.112, 2008, pp. 711.
[13] S.Ramesh, V.Prashanth Kumar, P.Kistaiah, C.Vishnuvadhan Redyy, Solid State Ionics, vol. 181, 2010, pp. 86.
[14] Yifeng Zheng, Liqiang Wu, Haitao Gu, Ling Gao, Han Chen, Lucun Guo. J Alloys Compd, vol.486, 2009, pp. 586-9.
[15] Yifeng Zheng, Shoucheng He, Lin Ge, Ming Zhou, Han Chen, Lucun Guo, Int. J of Hydrogen Energy, vol.36, 2011, pp. 5128-5135
[16] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai. Solid State Ionics, vol.52, 1992, pp. 165-72.
[17] L.V. Azaroff, Elements of X-Ray Crystallography, McGraw-Hill, New York, 1968, 552.
[18] S.Lubke, H.D.Wiemhofer, Solid State Ionics, vol.117, 1999, pp. 229.
[19] R.D.Shannon, Acta Cryst., vol. A32, 1976, pp. 751.
[20] J. H. Kuo, H. U. Anderson, and D. M. Sparlin: J. Solid State Chem., vol.83, 1989, pp. 52.
[21] S.R.Bishop, K.L.Dunkun, E.D.Wachsman, Electrochim. Acta, vol.54, 2009, pp. 1436.
[22] H.Hayashi, M.Kanoh, C.J.Quan, H.Inaba, S.Wang, M.Dokiya, H.Tagawa, Solid State Ionics, vol.132, 2000, pp. 227.
[23] F.Tietz, Ionics, vol.5, 1999, pp. 129.
[24] S.Wang, R.Zheng, A.Suzuki, T.Hashimoto, Solid State Ionics, vol.174, 2004, pp. 157.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.