Share This Article:

Preparation, Characterization and Thermal Expansion of Pr Co-Dopant in Samarium Doped Ceria

DOI: 10.4236/ampc.2012.24B002    3,122 Downloads   4,729 Views   Citations


The compositions Ce0.8-xSm0.2O2-δ(X=0, 0.02, 0.04, 0.06) were prepared through the sol–gel route. The effect of Pr addition on the crystal structure, densification and thermal expansion of Ce0.8Sm0.2O2-δ was studied. The phase identification and morphology was studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). X-ray diffraction analysis showed that all the samples exhibit a fluorite structure. The lattice parameters  were determined by X-ray powder diffraction. Lattice parameters and volume of the unit cell increases with Pr doping. Density of the all samples is more than 90% of theoretical density. The thermal expansion was measured using dilatometric technique in the temperature range 30–1000°C. It was observed that the thermal expansion increased linearly with increasing temperature for all the samples.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

V. Venkatesh, V. Prashanth Kumar, R. Sayanna and C. Vishnuvardhan Reddy, "Preparation, Characterization and Thermal Expansion of Pr Co-Dopant in Samarium Doped Ceria," Advances in Materials Physics and Chemistry, Vol. 2 No. 4B, 2012, pp. 5-8. doi: 10.4236/ampc.2012.24B002.


[1] Xingbao Zhu, Zhe Lu, Bo Wei, Yaohui Zhang, Xiqiang Huang, Wenhui Su, Int J Hydrogen Energy, vol.35, 2010, pp. 6897-904.
[2] J. Nielsen, A Hagen, Y.L. Liu, Solid State Ionics, vol.181, 2010, pp. 517-24.
[3] Yicheng Liou, Songling Yang, J Power Sources, vol.179, 2008, pp.553-9.
[4] N.P. Brandon, S. Skinner, B.C.H. Steele, Annu. Rev. Mater. Res., vol. 33, 2003, pp. 183.
[5] B.C.H. Steele, Solid State Ionics, vol.129, 2000, pp. 95-110.
[6] C.M. Lapa, D.P.F. De Souza, F.M.L. Figueiredo, F.M.B. Marques. Int J Hydrogen Energy, vol.35, 2010, pp. 2737-41.
[7] S.Omer, E.D.Wachsman, J.C.Nino, Solid State Ionics, vol.178,2008, pp. 1890-7.
[8] S.Omer, E.D.Wachsman, J.C.Nino, Solid State Ionics, vol.177,2006, pp. 3199.
[9] H.Inaba, H.Tagawa, Solid State Ionics, vol. 83, 1996, pp. 1.
[10] N.Kim, BH.Kim, D.Lee, J.Power Sources, vol. 90, 2000, pp. 139.
[11] S.Lubke, H.D.Wiemhofer, Solid State Ionics, vol.117, 1999, pp. 229.
[12] V.Prashanth Kumar, Y,S.Reddy, G.Prasad, P.Kistaiah, C.Vishnuvardhan Redyy, Mater.Chem.Phys, vol.112, 2008, pp. 711.
[13] S.Ramesh, V.Prashanth Kumar, P.Kistaiah, C.Vishnuvadhan Redyy, Solid State Ionics, vol. 181, 2010, pp. 86.
[14] Yifeng Zheng, Liqiang Wu, Haitao Gu, Ling Gao, Han Chen, Lucun Guo. J Alloys Compd, vol.486, 2009, pp. 586-9.
[15] Yifeng Zheng, Shoucheng He, Lin Ge, Ming Zhou, Han Chen, Lucun Guo, Int. J of Hydrogen Energy, vol.36, 2011, pp. 5128-5135
[16] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai. Solid State Ionics, vol.52, 1992, pp. 165-72.
[17] L.V. Azaroff, Elements of X-Ray Crystallography, McGraw-Hill, New York, 1968, 552.
[18] S.Lubke, H.D.Wiemhofer, Solid State Ionics, vol.117, 1999, pp. 229.
[19] R.D.Shannon, Acta Cryst., vol. A32, 1976, pp. 751.
[20] J. H. Kuo, H. U. Anderson, and D. M. Sparlin: J. Solid State Chem., vol.83, 1989, pp. 52.
[21] S.R.Bishop, K.L.Dunkun, E.D.Wachsman, Electrochim. Acta, vol.54, 2009, pp. 1436.
[22] H.Hayashi, M.Kanoh, C.J.Quan, H.Inaba, S.Wang, M.Dokiya, H.Tagawa, Solid State Ionics, vol.132, 2000, pp. 227.
[23] F.Tietz, Ionics, vol.5, 1999, pp. 129.
[24] S.Wang, R.Zheng, A.Suzuki, T.Hashimoto, Solid State Ionics, vol.174, 2004, pp. 157.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.