On the Thermal Conductivity of Single-Walled Carbon Nanotube Ropes


Recently measured thermal conductivity in single-walled carbon nanotube ropes in the temperature range 8 - 350 K has been explained using an anisotropic dynamical model which not only takes into account the quasi two-dimensional nature of the folded graphene sheets that forms the nanotubes, but also the intertube coupling, in addition to the phonon frequency and dimensionality dependent relaxation time of phonon-phonon scattering and interaction.

Share and Cite:

P. Silotia, S. Dabas, A. Saxena and S. Tewari, "On the Thermal Conductivity of Single-Walled Carbon Nanotube Ropes," Soft Nanoscience Letters, Vol. 3 No. 1, 2013, pp. 7-10. doi: 10.4236/snl.2013.31002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Hone, M. Whitney, C. Piskoti and A. Zettl, “Thermal Conductivity of Single-Walled Carbon Nanotubes,” Physical Review B, Vol. 59, No. 4, 1999, pp. R2514-R2516.
[2] J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt and R. E. Smalley, “Electrical and Thermal Transport Properties of Magnetically Aligned Single Walled Carbon Nanotube Films,” Applied Physical Letters, Vol. 77, No. 5, 2000, pp. 666-668. doi:10.1063/1.127079
[3] J. R. Olson, K. A. Topp and R. O. Pohl, “Specific Heat and Thermal Conductivity of Solid Fullerenes,” Science, Vol. 259, No. 5098, 1993, pp. 1145-1148. doi:10.1126/science.259.5098.1145
[4] R. Saito, T. Takeya, T. Kimura, G. Dresselhaus and M. S. Dresselhaus, “Raman Intensity of Single-Walled Carbon Nanotubes,” Physical Review B, Vol. 57, No. 7, 1998, pp. 4145-4153.
[5] S. P. Tewari, P. Silotia and K. Bera, “Role of Collective and Localized Modes on the Temperature-Dependent Thermal Conductivity in Polycrystalline C60 Fullerite Compacts,” Modern Physics Letters B, Vol. 11 No. 23, 1997, pp. 1031-1035. doi:10.1142/S0217984997001249
[6] J. Hone, “Carbon Nanotubes: Thermal Properties,” In: M. Dekker, Ed., Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, Inc., New York, 2004, pp. 603-610.
[7] S. P. Tewari and P. K. Gumber, “Effect of Crystal Anisotropy in Zinc,” Physica C, Vol. 165, No. 3-4, 1990, pp. 325-327. doi:10.1016/0921-4534(90)90212-W
[8] S. P. Tewari and P. Silotia, “The Effect of Crystal Anisotropy on the Lamb Mossbauer Recoilless Fraction and Second-Order Doppler Shift in Zinc,” Journal of Physics: Condensed Matter, Vol. 1, No. 31, 1989, pp. 5165-5170. doi:10.1088/0953-8984/1/31/015
[9] J. Hone, B. Batlogg, Z. Benes, A. T. Johnson and J. E. Fischer, “Quantized Phonon Spectrum of Single-Walled Carbon Nanotubes,” Science, Vol. 289 No. 5485, 2000, pp. 1730-1733. doi:10.1126/science.289.5485.1730
[10] S. P. Tewari, P. Silotia, S. Dabas and A. Saxena, “On the Excess Specific Heat of Single-Wall Carbon Nanotube Ropes Due to the Adsorption of Helium Atoms in the Temperature Range 2 - 20 K,” Journal of Nanophotonics, Vol. 2, No. 1, 2008, pp. 1-7.
[11] P. Silotia, S. Dabas, A. Saxena and S. P. Tewari, “Phonon Distribution of Aligned Multi-Walled Carbon Nanotubes,” Journal of Nanophotonics, Vol. 5, No. 1, 2011, pp. 1-9. doi:10.1117/1.3590198

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.