A Perspective on the Future of Distribution: Smart Grids, State of the Art, Benefits and Research Plans

Abstract

Currently, the design and operation criteria for electrical distribution networks are fastly changing due to some factors; among these, the progressive penetration of Distributed Generation (DG) is destined to cause deep changes in the existing networks, no longer considered as passive terminations of the whole electrical system. Moreover, the increasing application of Information Communication Technologies (ICT) will allow the implementation of the so called “smart grids”, determining new interesting scenarios. In the paper the problems and the potential benefits of DG, the possible new electrical distribution system models and the major research projects on smart grids are faced and reported.

Share and Cite:

R. Miceli, S. Favuzza and F. Genduso, "A Perspective on the Future of Distribution: Smart Grids, State of the Art, Benefits and Research Plans," Energy and Power Engineering, Vol. 5 No. 1, 2013, pp. 36-42. doi: 10.4236/epe.2013.51005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Cecati, F. Genduso, R. Miceli and G. R. Galluzzo, “A Suitable Control Technique for Fault-Tolerant Converters in Distributed Generation,” IEEE International Symposium on Industrial Electronics (ISIE), L’Aquila 27-30 June 2011, pp. 107-112.
[2] K. Knauss, C. Warren and D. Kearns, “An Innovative Approach to Smart Automation Testing at National Grid,” Transmission and Distribution Conference and Exposition (T&D), 7-10 May 2012, pp. 1-8.
[3] P. Chiradeja, “Benefit of Distributed Generation: A Line Loss Reduction Analysis,” Transmission and Distribution Conference and Exhibition, Asia and Pacific, Bangkok, 2005, pp. 1-5.
[4] D. L. Jia, X. L. Meng and X. H. Song, “Study on Technology System of Self-Healing Control in Smart Distribution Grid,” 2011 International Conference on Advanced Power System Automation and Protection, Biejing, 16-20 October 2011, pp. 26-30. doi:10.1109/APAP.2011.6180379
[5] A. O. Di Tommaso, S. Favuzza, F. Genduso and R. Miceli, “Development of Diagnostic Systems for the Fault Tolerant Operation of Micro-Grids,” International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Palermo, 14-16 June 2010, pp. 1645-1650.
[6] F. Genduso, R. MIceli and G. R. Galluzzo, “Flexible Power Converters for the Fault Tolerant Operation of MicroGrids,” XIX International Conference on Electrical Machines (ICEM), Palermo, 6-8 September 2010, pp. 1-6.
[7] C. Eu, “European Smartgrids Technology Platform-Vision and Strategy for Europe Electricity Networks of the Future,” European Commission, 6-8 September 2006.
[8] M. Samotyj and B. Howe, “Creating Tomorrow’s Intelligent Electric Power Delivery System,” 18th International Conference and Exhibition on Electricity Distribution, Palo Alto, 6-9 June 2005, pp. 1-5.
[9] K. Jennett, C. Booth and M. Lee, “Analysis of the Sympathetic Tripping Problem for Networks with High Penetrations of Distributed Generation,” International Conference on Advanced Power System Automation and Protection (APAP), Glasgow, 16-20 October 2011, pp. 384- 389. doi:10.1109/APAP.2011.6180432
[10] M. Hagh, N. Ghadimi, F. Hashemi and S. Zerbadst, “New Islanding Detection Algorithm for Wind Turbine,” 10th International Conference on Environment and Electrical Engineering (EEEIC), Ahar, 8-11 May 2011, pp. 1-5.
[11] A. O. Di Tommaso, F. Genduso, G. R. Galluzzo and R. Miceli, “Computer Aided Optimization via Simulation Tools of Energy Generation Systems with Universal Small Wind Turbines,” 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 25-28 June 2012, pp. 570-577. doi:10.1109/PEDG.2012.6254059
[12] F. Aalamifar, H. Hassanein and G. Takahara, “Viability of Powerline Communication for the Smart Grid,” 26th Biennial Symposium on Communications (QBSC), Kingston, 28-29 May 2012, pp. 19-23. doi:10.1109/QBSC.2012.6221343
[13] M. Loddo, “Pianificazione e Gestione Delle Reti Attive,” Ph.D. Thesis, University of Cagliari, Cagliari, 2008.
[14] ENTSO-E, “Roadmap 2010-2018 and Detailed Implementation Plan 2010-12,” European Commission, The European Electricity Grid Initiative (EEGI), 2010.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.