Share This Article:

Inhibitory Effect of Aqueous Extract of Moringa oleifera and Newbuoldia laevis Leaves on Ferrous Sulphate and Sodium Nitroprusside Induced Oxidative Stress in Rat’s Testes in Vitro

Abstract Full-Text HTML Download Download as PDF (Size:478KB) PP. 119-128
DOI: 10.4236/ojmc.2012.24015    4,436 Downloads   8,241 Views   Citations

ABSTRACT

Oxidative stress has been identified as one of the factors that affects fertility status. Therefore, this study sought to investigate the inhibitory effect of aqueous extract of Moringa oleifera and Newbuoldia laevis leaves on FeSO4 and Sodium Nitroprusside (SNP) induced lipid peroxidation in rat testes in vitro. Incubation of the testes tissue homogenate in the presence of FeSO4 and SNP caused a significant increase in the malondialdehyde (MDA) contents of the testes. The aqueous extract from both Moringa oleifera and Newbuoldia laevis leaves caused a significant decrease in the MDA contents of the testes in a dose-dependent manner. However, aqueous extract from Moringa oleifera leaf (EC50 = 0.29 mg/ml) had a significant (P<0.05) higher inhibitory effect on Fe2+ induced lipid peroxidation in the rat testes homogenate than that of Newbuoldia laevis leaf extract (EC50 = 0.58 mg/ml); while there was no significant (P<0.05) difference between the plant extracts on SNP induced lipid peroxidation in the rat testes homogenates. Therefore, part of the mechanisms through which the water extractable phytochemicals in the leaves protect the testes from oxidative stress may be through their antioxidant activity; DPPH scavenging ability, Fe2+ chelating and reducing power. Therefore, these plants have potential to prevent oxidative stress in testes and improve fertility outcomes.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Akomolafe, G. Oboh, A. Akindahunsi, A. Akinyemi and O. Adeyanju, "Inhibitory Effect of Aqueous Extract of Moringa oleifera and Newbuoldia laevis Leaves on Ferrous Sulphate and Sodium Nitroprusside Induced Oxidative Stress in Rat’s Testes in Vitro," Open Journal of Medicinal Chemistry, Vol. 2 No. 4, 2012, pp. 119-128. doi: 10.4236/ojmc.2012.24015.

References

[1] I. D. Sharlip, J. P. Jarow, A. M. Belker, L. I. Lipshultz, M. Sigman and A. J. Thomas, “Best Practice Policies for Male Infertility,” Fertility and Sterility, Vol. 77, No. 5, 2002, pp. 873-882. Hdoi:10.1016/S0015-0282(02)03105-9
[2] H. Sies, “Strategies of Antioxidant Defense,” European Journal of Biochemistry, Vol. 215, No. 2, 1993, pp. 213-219. Hdoi:10.1111/j.1432-1033.1993.tb18025.x
[3] Z. G. Badade and P. M. Samant, “Role of Oxidative Stress in Male Infertility,” Journal of Biomedical Sciences and Research, Vol. 3, No. 2, 2011, pp. 385-391.
[4] E. de Lamirande and C. Gagnon, “Impact of Reactive Oxygen Species on Spermatozoa: A Balancing Act between Beneficial and Detrimental Effects,” Human Reproduction, Vol. 10, No. 1, 1995, pp. 15-21. Hdoi:10.1093/humrep/10.suppl_1.15
[5] R. S. Britton, K. L. Leicester and B. R. Bacon, “Iron Toxicity and Chelation Therapy,” International Journal of Hematology, Vol. 76, No. 3, 2002, pp. 219-228. Hdoi:10.1007/BF02982791
[6] M. P. Zago, S. V. Verstraeten and P. I. Oteiza, “Zinc in the Prevention of Fe2+ Initiated Lipid and Protein Oxidation,” Biological Research, Vol. 33, No. 2, 2000, pp. 143-150. Hdoi:10.4067/S0716-97602000000200014
[7] J. Aitken, C. Krausz and D. Buckingham, “Relationships between Biochemical Markers for Residual Sperm Cytoplasm, Reactive Oxygen Species Generation, and the Presence of Leukocytes and Precursor Germ Cells in Human Sperm Suspensions,” Molecular Reproduction and Development, Vol. 39, No. 3, 1994, pp. 268-279. Hdoi:10.1002/mrd.1080390304
[8] R. K. Murray, D. K. Granner, P. A. Mayes and V. W. Rodwell, “Harper’s Biochemistry,” 25th Edition, The McGraw-Hill Companies, New York, 2000, p. 927.
[9] Y. Sugiyama, S. Kawakishi and T. Osawa, “Involvement of the B-Diketone Moiety in the Antioxidative Mechanism of Tetrahydrocurcumin,” Biochemical Pharmacology, Vol. 52, No. 4, 1996, pp. 519-525. Hdoi:10.1016/0006-2952(96)00302-4
[10] T. Tsuda, K. Shiga, K. Ohshima, S. Kawakishi and T. Osawa, “Inhibition of Lipid Peroxidation and the Active Oxygen Radical Scavenging Effect of Anthocyanin Pigments Isolated from Phaseolus vulgaris L.,” Biochemical Pharmacology, Vol. 52, No. 7, 1996, pp. 1033-1039. Hdoi:10.1016/0006-2952(96)00421-2
[11] M. Naito, M. Kuzuya and A. Iguchi, “Mechanisms of Endothelial Cell Injury Induced by Oxidatively Modified LDL,” Journal of Japan Atherosclerosis Society, Vol. 22, 1994, pp. 257-262.
[12] M. Naito, T. Hayashi and A. Iguchi, “New Approaches to the Prevention of Atherosclerosis,” Drugs, Vol. 50, No. 3, 1995, pp. 440-453. Hdoi:10.2165/00003495-199550030-00003
[13] E. N. Frankel, J. Kanner, J. B. German, E. Parks and J. E. Kinsella, “Inhibition of Oxidation of Human Low-Density Lipoprotein (1988): Antioxidant Defenses and Lipid Preoxidation in Human Blood Plasma,” Proceedings of the National Academy of Sciences, Vol. 85, No. 24, 1993, pp. 9748-9752.
[14] T. Osawa, S. Yoshida, K. Yamashida and H. Ochi, “Protective Role of Dietary Antioxidants in Oxidative Stress,” In: R. G. Cutler, L. Packer, J. Bertram and A. Mori, Eds., Oxidative Stress and Aging, Birkhauser-Verlag, Basel, 1995, pp. 367-377.
[15] G. Oboh and J. B. T. Rocha, “Polyphenols in Red Pepper [Capsicum Annuum Var. Aviculare (Tepin)] and Their Protective Effect on Some Pro-Oxidants Induced Lipid Peroxidation in Brain and Liver,” European Food Research and Technology, Vol. 225, No. 2, 2007, pp. 239-247. Hdoi:10.1007/s00217-006-0410-1
[16] C. Rice-Evans, N. J. Miller and G. Paganga, “StructureAntioxidant Activity Relationships of Flavonoids and Phenolic Acids,” Free Radicals in Biology and Medicine, Vol. 20, No. 7, 1996, pp. 933-956. Hdoi:10.1016/0891-5849(95)02227-9
[17] G. Oboh, “Polyphenol Extracts from Hyptis suaveolens Leaves Inhibit Fe2+-Induced Lipid Peroxidation in Brain,” International Journal of Biomedical and Pharmaceutical Sciences, Vol. 2, No. 1, 2008, pp. 41-46.
[18] G. Oboh and A. A. Akindahunsi, “Change in the Ascorbic Acid, Total Phenol and Antioxidant Activity of Some Sun-Dried Green Leafy Vegetables in Nigeria,” Nutrition and Health, Vol. 18, No. 1, 2004, pp. 29-36. Hdoi:10.1177/026010600401800103
[19] H. Fahey, “Moringa oleifera, A Review of the Medical Evidence for Its Nutritional, Therapeutic, and Prophylactic Properties,” Trees for Life Journal, Vol. 1, 2000, p. 5
[20] T. C. Ezeamuzie, A. W. Amberkedeme, F. O. Shode and S. C. Ekwebelem, “Anti-Inflammatory Effects of M. oleifera Root,” International Journal of Pharmacognosy, Vol. 34, No. 93, 1996, pp. 207-212. Hdoi:10.1076/phbi.34.3.207.13211
[21] S. K. Pal, P. K. Mukherjee and B. P. Saham, “Studies on the Anti-ulcer Activity of M. oleifera leaf Extracts on Gastric Ulcer Models in Rats,” Phytotherapy Research, Vol. 9, No. 6, 1995, pp. 463-465.
[22] M. Oommachan and S. S. Khan, “Plants in Aid of Family Planning,” Ancient Science of Life, Vol. 1, No. 1, 1981, pp. 64-66.
[23] H. M. Burkill, “The Useful Plants of West Tropical Africa,” 2nd Edition, Royal Botanic Gardens, Kew, London, 1985.
[24] H. M. Burkill, “The Useful Plants of West Tropical Africa,” 2nd Edition, Royal Botanic Gardens, London, 1997.
[25] G. Oboh, R. L. Puntel and J. B. T. Rocha, “Hot Pepper (Capsicum annuum, Tepin and Capsicum chinese, Habanero) Prevents Fe2+-Induced Lipid Peroxidation in Brain—in Vitro,” Food Chemistry, Vol. 102, No. 1, 2007, pp. 178-185. Hdoi:10.1016/j.foodchem.2006.05.048
[26] V. L. Singleton, R. Orthofer and R. M. Lamuela-Raventos, “Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent,” Academic Press, San Diego, 1999.
[27] A. Meda, C. E. Lamien, M. Romito, J. Millogo and O. G. Nacoulma, “Determination of the Total Phenolic, Flavonoid and Proline Contents in Burkina Faso Honey, as Well as Their Radical Scavenging Activity,” Food Chemistry, Vol. 91, No. 3, 2005, pp. 571-577. Hdoi:10.1016/j.foodchem.2004.10.006
[28] M. Benderitter, V. Maupoil, C. Vergely, F. Dalloz, F. Briot and L. Rochette, “Studies by Electron Paramagnetic Resonance of the Importance of Iron in Hydroxyl Scavenging Properties of Ascorbic Acid in Plasma Effects of Iron Chelators,” Fundamental & Clinical Pharmacology, Vol. 12, No. 5, 1998, pp. 510-516. Hdoi:10.1111/j.1472-8206.1998.tb00979.x
[29] N. A. V. Belle, G. D. Dalmolin, G. Fonini, M. A. Rubim and J. B. T. Rocha, “Polyamines Reduces Lipid Peroxidation Induced by Different Pro-Oxidant Agents,” Brain Research, Vol. 1008, No. 2, 2004, pp. 245-251. Hdoi:10.1016/j.brainres.2004.02.036
[30] H. Ohkawa, N. Ohishi and K. Yagi, “Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction,” Analytical Biochemistry, Vol. 95, No. 2, 1979, pp. 351-358. Hdoi:10.1016/0003-2697(79)90738-3
[31] M. A. Gyamfi, M. Yonamine and Y. Aniya, “Free-Radical Scavenging Action of Medicinal Herbs from Ghana: Thonningia Sanguinea on Experimentally-Induced Liver Injuries,” General Pharmacology, Vol. 32, No. 6, 1999, pp. 661-667. Hdoi:10.1016/S0306-3623(98)00238-9
[32] G. Minotti and S. D. Aust, “An Investigation into the Mechanism of Citrate-Fe2+-Dependent Lipid Peroxidation,” Free Radical Biology and Medicine, Vol. 3, No. 6, 1987, pp. 379-387. Hdoi:10.1016/0891-5849(87)90016-5
[33] P. R. L. Untel, C. W. Nogueira and J. B. T. Rocha, “Krebs Cycle Intermediates Modulate Thiobarbituric Reactive Species (TBARS) Production in Rat Brain in Vitro,” Neurochemical Research, Vol. 30, No. 2, 2005, pp. 225-235. Hdoi:10.1007/s11064-004-2445-7
[34] M. Oyaizu, “Studies on Products of Browning Reaction: Antioxidative Activity of Products of Browning Reaction Prepared from Glucosamine,” Japanese Journal of Nutrition, Vol. 44, No. 6, 1986, pp. 307-315. Hdoi:10.5264/eiyogakuzashi.44.307
[35] J. H. Zar, “Biostatistical Analysis,” Prentice-Hall, Inc., Upper Saddle River, 1984.
[36] Y. Chu, J. Sun, X. Wu and R. H. Liu, “Antioxidant and Antiproliferative Activity of Common Vegetables,” Journal of Agricultural and Food Chemistry, Vol. 50, No. 23, 2002, pp. 6910-6916. Hdoi:10.1021/jf020665f
[37] G. Oboh, “Effect of Blanching on the Antioxidant Property of Some Tropical Green Leafy Vegetables,” Lebensmittel Wissenschaft und Technologie, Vol. 38, No. 5, 2005, pp. 513-517. Hdoi:10.1016/j.lwt.2004.07.007
[38] E. Kronhausen, P. Kronhausen, B. Harry and M. D. Demopoulos, “Formula for Life,” William Morrow and Co., Inc., New York, 1989.
[39] L. Calucci, C. Pinzino, M. Zandomeneghi, A. Capocchi, S. Ghiringhelli, F. Saviozzi, S. Tozzi and L. Galleschi, “Effects of ?-Irradiation on the Free Radical and Antioxidant Contents in Nine Aromatic Herbs and Spices,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 4, 2003, pp. 927-934. Hdoi:10.1021/jf020739n
[40] G. Oboh, “Antioxidant Properties of Some Commonly Consumed and Underutilized Tropical Legumes,” European Food Research and Technology, Vol. 244, No. 1, 2006, pp. 61-65. Hdoi:10.1007/s00217-006-0289-x
[41] G. Oboh and J. B. T. Rocha, “Water Extractable Phytochemicals from Capsicum pubescens (Tree Pepper) Inhibit Lipid Peroxidation Induced by Different Pro-Oxidant Agents in Brain in Vitro,” European Food Research and Technology, Vol. 226, No. 4, 2008, pp. 707-713. Hdoi:10.1007/s00217-007-0580-5
[42] G. Oboh, A. J. Akinyemi and A. O. Ademiluyi, “Antioxidant and Inhibitory Effect of Red Ginger (Zingiber officinale var. Rubra) and White Ginger (Zingiber officinale Roscoe) on Fe2+ Induced Lipid Peroxidation in Rat Brain in Vitro,” Experimental and Toxicologic Pathology, Vol. 64, No. 1-2, 2012, pp. 31-36. Hdoi:10.1016/j.etp.2010.06.002
[43] D. Amic, D. Davidovic-Amic, D. Beslo and N. Trinajstic, “Structure-Radical Scavenging Activity Relationship of Flavonoids,” Croatia Chemical Acta, Vol. 76, No. 1, 2003, pp. 55-61.
[44] A. O. Ademiluyi, V. O. E. Akpambang and G. Oboh, “Polyphenol Contents and Antioxidant Capacity of Tropical Clove Bud (Eugenia aromatica Kuntze),” The Italian Magazine of Fatty Substances, Vol. 86, No. 2, 2009, pp. 131-137.
[45] G. Oboh, H. Raddatz and T. Henle, “Antioxidant Properties of Polar and Non-Polar Extracts of Some Tropical Green Leafy Vegetables,” Journal of the Science of Food and Agriculture, Vol. 88, No. 14, 2008, pp. 2486-2492. Hdoi:10.1002/jsfa.3367
[46] A. Marin, F. Ferreres, F. A. Tomas-Barberan and M. I. Gil, “Characterization and Quantitation of Antioxidant Constituents of Sweet Pepper (Capsicum annuum L.),” Journal of Agricultural and Food Chemistry, Vol. 52, No. 12, 2004, pp. 3861-3869. Hdoi:10.1021/jf0497915
[47] M. Materska and I. Perucka, “Antioxidant Activity of the Main Phenolic Compounds Isolated from Hot Pepper Fruits (Capsicum annuum L.),” Journal of Agricultural and Food Chemistry, Vol. 53, 2005, pp. 1730-1758. Hdoi:10.1021/jf035331k
[48] R. J. Aitken, D. Harkiss and D. W. Buckingham, “Analysis of Lipid Peroxidation Mechanisms in Human Spermatozoa,” Molecular Reproduction and Development, Vol. 35, No. 3, 1993, pp. 302-315. Hdoi:10.1002/mrd.1080350313
[49] J. Aitken and H. Fisher, “Reactive Oxygen Species Generation and Human Spermatozoa: The Balance of Benefit and Risk,” Bioessays, Vol. 16, No. 4, 1994, pp. 259-267. Hdoi:10.1002/bies.950160409
[50] K. Narayana, “An Aminoglycocide Antibiotic Gentamycin Induces Oxidative Stress, Reduces Antioxidant Reserve and Impairs Spermatogenesis in Rats,” The Journal of Toxicological Sciences, Vol. 33, No. 1, 2008, pp. 85-96. Hdoi:10.2131/jts.33.85
[51] M. P. Zago, S. V. Verstraeten and P. I. Oteiza, “Zinc in the Prevention of Fe2+ Initiated Lipid and Protein Oxidation,” Journal of Biological Research, Vol. 33, No. 2, 2000, pp. 143-150. Hdoi:10.4067/S0716-97602000000200014
[52] Y. Minamiyama, S. Takemura, S. Kodai, H. Shinkawa, T. Tsukiola, H. Ichikawa, Y. Naito, T. Yoshikawa and S. Okada, “Iron Restriction Improves Type 2 Diabetes Mellitus in Otsuka Long-Evans Tokushima Fatty Rats,” American Journal of Physiology—Endocrinology and Metabolism, Vol. 298, No. 6, 2010, pp. 1140-1149. Hdoi:10.1152/ajpendo.00620.2009
[53] M. Alia, C. Horcajo, L. Bravo and L. Goya, “Effect of Grape Antioxidant Dietary Fiber on the Total Antioxidant Capacity and the Activity of Liver Antioxidant Enzymes in Rats,” Nutrition Research, Vol. 23, No. 9, 2003, pp. 1251-1267. Hdoi:10.1016/S0271-5317(03)00131-3
[54] D. Amic, D. Davidovic-Amic, D. Beslo and N. Trinajstic, “Structure-Radical Scavenging Activity Relationship of Flavonoids,” Croatica Chemica Acta, Vol. 76, No. 1, 2003, pp. 55-61.
[55] K. Dastmalchi, H. J. D. Dorman, M. Kosar and R. Hiltunen, “Chemical Composition and in Vitro Antioxidant Evaluation of a Water Soluble Moldavian Balm (Dracocephalum moldavica L.) Extract,” LWT—Food Science and Technology, Vol. 40, No. 2, 2007, pp. 239-248. Hdoi:10.1016/j.lwt.2005.09.019
[56] J. Y. Je, P. J. Park, E. K. Kim and C. B. Ahn, “Antioxidant and Angiotensin I Converting Enzyme Inhibitory Activity of Bambusae caulis in Liquamen,” Food Chemistry, Vol. 113, No. 4, 2009, pp. 932-935. Hdoi:10.1016/j.foodchem.2008.08.022
[57] C. Hu, Y. Zhang and D. D. Kitts, “Evaluation of Antioxidant and Prooxidant Activities of Bamboo Phyllostachys niger var. Henonis Leaf Extract in Vitro,” Journal of Agricultural and Food Chemistry, Vol. 48, No. 8, 2000, pp. 3170-3176. Hdoi:10.1021/jf0001637
[58] M. Allhorn, A. Klapyta and B. Akerstrom, “Redox Properties of the Lipocalin Alpha1 Microglobulin: Reduction of Cytochrome C, Hemoglobin, and Free Iron,” Free Radical Biology and Medicine, Vol. 38, No. 5, 2005, pp. 557-567. Hdoi:10.1016/j.freeradbiomed.2004.12.013

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.