The Distribution of the Stress Protein HSP70 in the Cerebellum of Patients with Schizophrenia

DOI: 10.4236/nm.2012.34045   PDF   HTML     2,859 Downloads   4,434 Views   Citations


Data accumulated from neuro-imaging, clinical and morphological studies suggest that the cerebellum is involved in cognitive functions and thus may be important in the etiopathogenesis of schizophrenia, since patients show cognitive abnormalities. In the present study, we have attempted to localize cellular metabolic dysfunctions applying the immunohistochemical and Western blot method to demonstrate the expression of the stress protein HSP70, which is a marker of cellular metabolic dysfunction in the brain. We studied the post mortem brains’ cerebellum of 12 normal controls and 10 schizophrenics. We have used the polyclonal antibody rabbit anti-HSP70 on paraffin sections as well as on nitrocellulose membranes. Bound antibody was detected using the indirect method of streptavidin-peroxidase-DAB. The results in the cerebellum of controls showed intense HSP70 immunoreaction in the synaptic glomeruli of the granular cell layer, in the cytoplasm and dendrites of Purkinje cells. In the same areas of the cerebellum of schizophrenics the HSP70 immunoreactivity was minimal. These results suggest that the reduced levels of HSP70 in the cerebellum are likely to contribute synergistically to the cognitive dysfunction in schizophrenia. This may suggest abnormality of protective neural mechanisms in such pathological conditions.

Share and Cite:

M. Leonidas, "The Distribution of the Stress Protein HSP70 in the Cerebellum of Patients with Schizophrenia," Neuroscience and Medicine, Vol. 3 No. 4, 2012, pp. 368-373. doi: 10.4236/nm.2012.34045.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] N. C. Andreasen, “A Unitary Model of Schizophrenia,” Archives of General Psychiatry, Vol. 56, No. 9, 1999, pp. 781-787. doi:10.1001/archpsyc.56.9.781
[2] H. Picard, I. Amado, S. Mouchet-Mages, J. P. Olie and M. O. Krebs, “The Role of the Cerebellum in Schizophrenia: An Update of Clinical, Cognitive, and Functional Evidences,” Schizophrenia Bulletin, Vol. 34, No. 1, 2008, pp. 155-172. doi:10.1093/schbul/sbm049
[3] D. O. Frost, C. A. Tamminga, D. R. Medoff, C. Caviness, G. Innocenti and W. T. Carpenter, “Neuroplasticity and Schizophrenia,” Biological Psychiatry, Vol. 56, No. 8, 2004, pp. 540-543. doi:10.1016/j.biopsych.2004.01.020
[4] S. L. Eastwood and P. J. Harrison, “Synaptic Pathology in the Anterior Cingulate Cortex in Schizophrenia and mood disorders. A review and A Western Blot Study of Synaptophysin, GAP-43 and the Complexins,” Brain Research Bulletin, Vol. 55, No. 5, 2001, pp. 569-578. doi:10.1016/S0361-9230(01)00530-5
[5] M. L. Phillips, W. C. Drevets, S. L. Rauch and R. Lane, “Neurobiology of Emotion Perception II: Implications for Major Psychiatric Disorders,” Biological Psychiatry, Vol. 54, No. 5, 2003, pp. 515-528. doi:10.1016/S0006-3223(03)00171-9
[6] A. Parcellier, S. Gurbuxani, E. Schmitt, E. Solary and C. Garrido “Heat Shock Proteins, Cellular Chaperones that Modulate Mitochondrial Cell Death Pathways,” Biochemical and Biophysical Research Communications, Vol. 304, No. 3, 2003, pp. 505-512. doi:10.1016/S0006-291X(03)00623-5
[7] R. G. Giffard and M. A. Yenari, “Many Mechanisms for Hsp70 Protection from Cerebral Ischemia,” Journal of Neurosurgical Anesthesiology, Vol. 16, No. 1, 2004, pp. 53-61. doi:10.1097/00008506-200401000-00010
[8] S. Takayama, J. C. Reed and S. Homma, “Heat-Shock Proteins as Regulators of Apoptosis,” Oncogene, Vol. 22, No. 56, 2003, pp. 9041-9047. doi:10.1038/sj.onc.1207114
[9] J. Q. Lan, J. Chen, F. R. Sharp, R. P. Simon and S. H. Graham, “Induction of Heat-Shock Protein (HSP72) in the Cingulated and Retrosplenial Cortex by Drugs that Antagonize the Effects of Excitatory Amino Acids,” Brain Research Molecular Brain Research, Vol. 46, No. 1-2, 1997, pp. 297-302. doi:10.1016/S0169-328X(97)00003-X
[10] H. Kluever and E. Barrera, “A Method for the Combined Stainning of Cells and Fibres in the Nervous System,” Journal of Neuropathology, Vol. 12, No. 4, 1953, pp. 400-403. doi:10.1097/00005072-195312040-00008
[11] J. L. Pongrac, F. A. Middleton, L. Peng, D. A. Lewis, P. Levitt and K. Mirnics, “Heat Shock Protein 12A Shows Reduced Expression in the Prefrontal Cortex of Subjects with Schizophrenia,” Biological Psychiatry, Vol. 56, No. 12, 2004, pp. 943-950. doi:10.1016/j.biopsych.2004.09.005
[12] F. R. Sharp, S. M. Massa and R. A. Swanson, “Heat-Shock Protein Protection,” Trends in Neurosciences, Vol. 22, No. 3, 1999, pp. 97-99. doi:10.1016/S0166-2236(98)01392-7
[13] M. A. Yenari, R. M. Sapolsky and G. K. Steinberg, “The Neuroprotective Potential of Heat Shock Protein 70 (HSP70),” Molecular Medicine Today, Vol. 5, No. 12, 1999, pp. 525-531. doi:10.1016/S1357-4310(99)01599-3
[14] I. R. Brown, “Heat Shock Proteins and Protection of the Nervous System,” Annals of the New York Academy of Sciences, Vol. 1113, 2007, pp. 147-158. doi:10.1196/annals.1391.032
[15] S. L. Eastwood, A. J. Law, I. P. Everall and P. J. Harrison, “The Axonal Chemorepellant Semaphorin 3A is Increased in the Cerebellum in Schizophrenia and May Contribute to Its Synaptic Pathology,” Molecular Psychiatry, Vol. 8, No. 2, 2003, pp. 148-155. doi:10.1038/
[16] J. J. Kim, S. J. Lee, K. Y. Toh, C. U. Lee, C. Lee and I. H. Paik, “Identification of Antibodies to Heat Shock Proteins 90 Kda and 70 Kda in Patients with Schizophrenia,” Schizophrenia Research, Vol. 52, No. 1, 2001, pp. 127-135. doi:10.1016/S0920-9964(00)00091-8
[17] M. J. Schwarz, M. Riedel, R. Gruber, M. Ackenheil and N. Muller, “Antibodies to Heat Shock Proteins in Schizophrenic Patients: Implications for the Mechanism of the Disease,” American Journal of Psychiatry, Vol. 156, No. 7, 1999, pp. 1103-1104.
[18] T. A. Atkin, N. J. Brandon and J. T. Kittler, “Disrupted in Schizophrenia 1 Forms Pathological Aggresomes that Disrupt Its Function in Intracellular Transport,” Human Molecular Genetics, Vol. 21, No. 9, 2012, pp. 2017-2028. doi:10.1093/hmg/dds018
[19] S. L. Eastwood, D. Cotter and P. J. Harrison, “Cerebellar Synaptic Protein Expression in Schizophrenia,” Neuroscience, Vol. 105, No. 1, 2001, pp. 219-229. doi:10.1016/S0306-4522(01)00141-5
[20] D. Watanabe, H. Inokawa, K. Hashimoto, N. Suzuki, M. Kano, R. Shigemoto, T. Hirano, K. Toyama, S. Kaneko, M. Yokoi, K. Moriyoshi, M. Suzuki, K. Kobayashi, T. Nagatsu, R. J. Kreitman, I. Pastan and S. Nakanishi, “Ablation of Cerebellar Golgi Cells Disrupts Synaptic Integration Involving GABA Inhibition and NMDA Receptor Activation in Motor Coordination,” Cell, Vol. 95, No. 1, 1998, pp. 17-27. doi:10.1016/S0092-8674(00)81779-1
[21] S. H. Fatemi, J. M. Stary, J. A. Earle, M. Araghi-Niknam and E. Eagan, “GABAergic Dysfunction in Schizophrenia and Mood Disorders as Reflected by Decreased Levels of Glutamic Acid Decarboxylase 65 and 67 Kda and Reelin Proteins in Cerebellum,” Schizophrenia Research, Vol. 72, No. 2, 2005, pp. 109-122. doi:10.1016/j.schres.2004.02.017
[22] N. C. Andreasen and R. Pierson, “The Role of the Cerebellum in Schizophrenia,” Biological Psychiatry, Vol. 64, No. 2, 2008, pp. 81-88. doi:10.1016/j.biopsych.2008.01.003

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.