Share This Article:

Quantum Teleportation with an Accelerated Partner in Open System

Abstract Full-Text HTML Download Download as PDF (Size:553KB) PP. 103-111
DOI: 10.4236/jqis.2012.24016    3,140 Downloads   6,820 Views  


We investigate the teleportation between two relatively accelerating partners undergoing the phase flip, bit flip and bit-phase flip channels. We find that: 1) the fidelity decreases by increasing the acceleration of accelerated observer; 2) the dynamic evolution of the fidelity is different for various channels if the acceleration is fixed; and 3) the fidelity is always symmetric about β2=1/2 where βis a parameter of the transmission state.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Xiang and J. Jing, "Quantum Teleportation with an Accelerated Partner in Open System," Journal of Quantum Information Science, Vol. 2 No. 4, 2012, pp. 103-111. doi: 10.4236/jqis.2012.24016.


[1] A. Einstein, B. Podolsky and N. Rosen, “Can Quantum- Mechanical Description of Physical Reality Be Considered Complete?”Physical Review, Vol. 47, No.10, 1935, p. 777. doi:10.1103/PhysRev.47.777
[2] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, “Quantum Entanglement,” Reviews of Modern Physics, Vol. 81, No. 2, 2009, p. 865. doi:10.1103/RevModPhys.81.865
[3] C. H. Bennett, G. Brassard, C. Crpeau, R. Jozsa, A. Peres and W. K. Wootters, “Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels,” Physical Review Letters, Vol. 70, No. 13, 1993, p. 1895. doi:10.1103/PhysRevLett.70.1895
[4] Y. Yeo and W. K. Chua, “Teleportation and Dense Coding with Genuine Multipartite Entanglement,” Physical Review Letters, Vol. 96, No. 6, 2006, Article ID: 060502. doi:10.1103/PhysRevLett.96.060502
[5] G. Gordon and G. Rigolin, “Generalized Teleportation Protocol,” Physical Review A, Vol. 73, No. 4, 2006, Article ID: 042309. doi:10.1103/PhysRevA.73.042309
[6] L. Mista and R. Filip, “Optimal Partial Deterministic Quantum Teleportation of Qubits,” Physical Review A, Vol. 71, No. 4, 2005, Article ID: 022319.
[7] M. Fujii, “Continuous-Variable Quantum Teleportation with a Conventional Laser,” Physical Review A, Vol. 68, No. 5, 2003, Article ID: 050302. doi:10.1103/PhysRevA.68.050302
[8] D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter and A. Zeilinger, “Experimental Quantum Teleportation,” Nature, Vol. 390, No. 6660, 1997, pp. 575-579. doi:10.1038/37539
[9] P. M. Alsing, “Teleportation in a Non-Inertial Frame,” Journal of Optics B: Quantum and Semiclassical Optics, Vol. 6, No. 8, 2004, p. S834. doi:10.1088/1464-4266/6/8/033
[10] P. M. Alsing and G. J. Milburn, “Teleportation with a Uniformly Accelerated Partner,” Physical Review Letters, Vol. 91, No. 18, 2003, Article ID: 180404. doi:10.1103/PhysRevLett.91.180404
[11] M. R. Hwang, D. Park and E. Jung, “Tripartite Entanglement in a Noninertial Frame,” Physical Review A, Vol. 83, No. 1, 2001, Article ID: 012111.
[12] B. L. Hu, A. Roura and S. Shresta, “Vacuum Fluctuations and Moving Atoms/Detectors: From the Casimir? Polder to the Unruh? Davies? DeWitt? Fulling Effect,” Journal of Optics B: Quantum and Semiclassical Optics, Vol. 6, No. 8, 2004, p. S698. doi:10.1088/1464-4266/6/8/011
[13] Q. Pan and J. Jing, “Degradation of Nonmaximal Entanglement of Scalar and Dirac Fields in Noninertial Frames,” Physical Review A, Vol. 77, No. 2, 2008, Article ID: 024302. doi:10.1103/PhysRevA.77.024302
[14] M. Montero, E. Martin-Martinez, “The Entangling Side of the Unruh-Hawking Effect,” Journal of High Energy Physics, Vol. 2011, No. 7, 2011, p. 6.
[15] J. Wang, J. Deng and J. Jing, “Classical Correlation and Quantum Discord Sharing of Dirac Fields in Noninertial Frames,” Physical Review A, Vol. 81, No. 5, 2010, Article ID: 052120. doi:10.1103/PhysRevA.81.052120
[16] J. Wang and J. Jing, “Multipartite Entanglement of Fermionic Systems in Noninertial Frames,” Physical Review A, Vol. 83, No. 2, 2011, Article ID: 022314. doi:10.1103/PhysRevA.83.022314
[17] X. H. Ge and Y. G. Shen, “Teleportation in the Background of Schwarzschild Space? Time,” Physics Letters B, Vol. 606, No.1-2, 2005, p. 184. doi:10.1016/j.physletb.2004.11.067
[18] X. H. Ge and S. P. Kim, Class. “Quantum Entanglement and Teleportation in Higher Dimensional Black Hole Spacetimes,” Classical and Quantum Gravity, Vol. 25, No. 7, 2008, Article ID: 075011. doi:10.1088/0264-9381/25/7/075011
[19] X. H. Ge and Y. G. Shen, “Quantum Teleportation with Sonic Black Holes,” Physics Letters B, Vol. 623, No. 1-2, 2005, p. 141. doi:10.1016/j.physletb.2005.07.036
[20] Q. Pan and J. Jing, “Hawking Radiation, Entanglement, and Teleportation in the Background of an Asymptotically Flat Static Black Hole,” Physical Review D, Vol. 78, No. 6, 2008, Article ID: 065015. doi:10.1103/PhysRevD.78.065015
[21] B. N. Esfahani, M. Shamirzai and M. Soltani, “Reduction of Entanglement Degradation in Einstein-Gauss-Bonnet gravity,” Physical Review D, Vol. 84, No. 2, 2011, Article ID: 025024.
[22] D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I. O. Stamatescu and H. D. Zeh, “Decoherence and the Appearence of a Classical World in Quantum Teory,” Springer, Berlin, 1996, pp. 44-107.
[23] M. A. Schlosshauer, “Decoherence and the Quantum-to-Classical Transition,” Springer, Berlin, 2007.
[24] M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond and S. Haroche, “Observing the Progressive Decoherence of the Meter in a Quantum Measurement,” Physical Review Letters, Vol. 77, No. 24, 1996, p. 4887. doi:10.1103/PhysRevLett.77.4887
[25] C. J. Myatt, B. E. King, Q. A. Turchette, C. A. Sackett, D. Kiepinski, W. M. Itano, C. Monroc and D. J. Wineland, “Decoherence of Quantum Superpositions through Coupling to Engineered Reservoirs,” Nature, Vol. 403, No. 6767, 2000, p. 269. doi:10.1038/35002001
[26] M. Aspachs, G. Adesso and I. Fuentes, “Optimal Quantum Estimation of the Unruh-Hawking Effect,” Physical Review Letters, Vol. 105, No. 15, 2010, Article ID: 151301. doi:10.1103/PhysRevLett.105.151301
[27] E. Martin-Martinez, L. J. Garay and J. Leon, “Unveiling Quantum Entanglement Degradation near a Schwarzschild Black Hole,” Physical Review D, Vol. 82, No. 6, 2010, Article ID: 064006.
[28] E. Martin-Martinez, L. J. Garay and J. Leon, “Quantum Entanglement Produced in the Formation of a Black Hole,” Physical Review D, Vol. 82, No.6, 2010, Article ID: 064028. doi:10.1103/PhysRevD.82.064028
[29] J. Wang and J. Jing, “System-Environment Dynamics of X-Type States in Noninertial Frames,” Annals of Physics, Vol. 327, No. 2, 2012, p. 283. doi:10.1016/j.aop.2011.10.002
[30] A. Salles, F. de Melo, M. P. Almeida, M. Hor-Meyll, S. P. Walborn, P. H. Souto Ribeiro and L. Davidovich, “Experimental Investigation of the Dynamics of Entanglement: Sudden Death, Complementarity, and Continuous Monitoring of the Environment,” Physical Review A, Vol. 78, No. 2, 2008, Article ID: 022322. doi:10.1103/PhysRevA.78.022322
[31] J. Maziero, L. C. Celeri, R. M. Serra and V. Vedral, “Classical and Quantum Correlations under Decoherence,” Physical Review A, Vol. 80, No. 4, 2009, Article ID: 044102. doi:10.1103/PhysRevA.80.044102
[32] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, Cambridge, 2000, pp. 425-427.
[33] J. Maziero, T. Werlang, F. Fanchini, L. C. Celeri and R. M. Serra, “System-Reservoir Dynamics of Quantum and Classical Correlations,” Physical Review A, Vol. 81, No. 2, 2010, Article ID: 022116. doi:10.1103/PhysRevA.81.022116

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.