Long-Term Exclusion of Grazing Increases Soil Microbial Biomass but Not Diversity in a Temperate Grassland

DOI: 10.4236/ojss.2012.24043   PDF   HTML     2,855 Downloads   4,605 Views   Citations


Restoration of grassland such as exclusion of grazing has been considered to increase aboveground plant diversity and soil fertility. However, knowledge on the effect of long-term exclusion of grazing on soil bacterial community structure and diversity is not well understood. The two sites were selected in the Inner Mongolian grassland, i.e., one fenced off since 1979 (UG79) and the other continually grazed by sheep (FG) all along. Soil microbial biomass was measured using fumigation method and bacterial community structure and diversity were assessed using methods of Denaturing Gradient Gel Electrophoresis (DGGE) and clone library. Results showed that the UG79 soil had significantly higher microbial biomass carbon and nitrogen compared with the FG soil. There was a clear separation in soil bacterial community structure, but not in bacterial diversity between the two sites. Moreover, 55 clones from the UG79 soil and 56 clones from the FG soil were selected and sequenced. Phylogenetic analysis of all clone sequences indicated that bacterial communities were dominated by the groups of Actinomycetes, Proteobacteria and Bacteroidetes, but there were no significant differences in bacterial diversity between the two sites, consistent with the results obtained from DGGE. The results highlighted that although long-term exclusion of grazing increased soil microbial biomass, but it did not harbor higher bacterial diversity compared with freely grazed site.

Share and Cite:

X. Zhou, C. Chen and Y. Wang, "Long-Term Exclusion of Grazing Increases Soil Microbial Biomass but Not Diversity in a Temperate Grassland," Open Journal of Soil Science, Vol. 2 No. 4, 2012, pp. 364-371. doi: 10.4236/ojss.2012.24043.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. A. Wardle, R. D. Bardgett, J. N. Klironomos, H. Set?l? , W. H. van der Putten and D. H. Wall, “Ecological Linkages between Aboveground and Belowground Biota,” Science, Vol. 304, No. 5677, 2004, pp. 1629-1633. doi:10.1126/science.1094875
[2] M. Steffens, A. Koelbl, K. U. Totsche and I. Koegel- Knabner, “Grazing Effects on Soil Chemical and Physical Properties in a Sem-Arid Steppe of Inner Mongolia (P. R. China),” Geoderma, Vol. 143, No. 1-2, 2008, pp. 63-72. doi:10.1016/j.geoderma.2007.09.004
[3] Z. Z. Chen and S. P. Wang, “Chinese Typical Grassland Ecosystem,” Science Press, Beijing, 2000.
[4] D. A. Wardle, R. D. Bardgett, L. R. Walker, D. A. Peltzer and A. Lagerstrom, “The Response of Plant Diversity to Ecosystem Retrogression: Evidence from Contrasting LongTerm Chronosequences,” Oikos, Vol. 117, No. 1, 2008, pp. 93-103. doi:10.1111/j.2007.0030-1299.16130.x
[5] C. D. Clegg, “Impact of Cattle Grazing and Inorganic Fertilizer Additions to Managed Grasslands on the Microbial Community Composition of Soils,” Applied Soil Ecology, Vol. 31, No. 1-2, 2006, pp. 73-82. doi:10.1016/j.apsoil.2005.04.003
[6] K. Klumpp, S. Fontaine, E. Attard, X. L. Roux, G. Gleixner and J. Soussana, “Grazing Triggers Soil Carbon Loss by Altering Plant Roots and Their Control on Soil Microbial Community,” Journal of Eology, Vol. 97, No. 5, 2009, pp. 876-885. doi:10.1111/j.1365-2745.2009.01549.x
[7] C. H. Wang, S. Q. Wan, X. R. Xing, L. Zhang and X. G. Han, “Temperature and Soil Moisture Interactively Affected Soil Net N Mineralization in Temperate Grassland in Northern China,” Soil Biology and Biochemistry, Vol. 38, No. 5, 2006, pp. 1101-1110. doi:10.1016/j.soilbio.2005.09.009
[8] Y. Q. Xu, L. H. Li, Q. B. Wang, Q. S. Chen and W. X. Cheng, “The Pattern between Nitrogen Mineralization and Grazing Intensities in an Inner Mongolian Typical Steppe,” Plant and Soil, Vol. 300, No. 1-2, 2007, pp. 289-300. doi:10.1007/s11104-007-9416-0
[9] R. D. Bardgett, W. D. Bowman, R. Kaufmann and S. K. Schmidt, “A Temporal Approach to Linking Aboveground and Belowground Ecology,” Trends in Ecology and Evolution, Vol. 20, No. 11, 2005, pp. 634-641. doi:10.1016/j.tree.2005.08.005
[10] M. Sankaran and D. J. Augustine, “Large Hervivores Suppress Decomposer Abundance in a Semiarid Grazing Ecosystems,” Ecology, Vol. 85, No. 4, 2004, pp. 1052- 1061. doi:10.1890/03-0354
[11] A. E. McCaig, L. A. Glover and J. I. Prosser, “Numerical Analysis of Grassland Bacterial Community Structure under Different Land Management Regimens by Using 16S Ribosomal DNA Sequences Data and Denaturing Gradient Gel Eletrophoresis Banding Patterns,” Applied and Environmental Microbiology, Vol. 67, No. 10, 2001, pp. 4554-4559. doi:10.1128/AEM.67.10.4554-4559.2001
[12] K. Jangid, M. A. Williams, A. J. Franzluebbers, J. S. Sanderlin, J. H. Reeves, M. B. Jenkins, D. M. Endale, D. C. Coleman and W. B. Whitman, “Relative Impacts of Land- Use, Management Intensity and Fertilization upon Soil Microbial Community Structure in Agricultural Systems,” Soil Biology and Biochemistry, Vol. 40, No. 11, 2008, pp. 2843-2853. doi:10.1016/j.soilbio.2008.07.030
[13] X. Q. Zhou, J. Z. Wang, Y. B. Hao and Y. F. Wang, “Intermediate Grazing Intensities by Sheep Increase Soil Bacterial Diversities in an Inner Mongolian steppe,” Biology and Fertility of Soils, Vol. 46, No. 8, 2010, pp. 817- 824. doi:10.1007/s00374-010-0487-3
[14] Y. F. Bai, X. G. Han, J. G. Wu, Z. Z. Chen and L. H. Li, “Ecosystem Stability and Compensatory Effects in the Inner Mongolia Grassland,” Nature, Vol. 431, No. 9, 2004, pp. 181-184. doi:10.1038/nature02850
[15] X. Q. Zhou, Y. F. Wang and Y. B. Hao, “Short-Term Rather Than Long-Term Exclusion of Grazing Increases Soil Bacterial Diversity in an Inner Mongolian Steppe,” Acta Ecologica Sinica, Vol. 32, No. 4, 2012, pp. 180-183. doi:10.1016/j.chnaes.2012.04.009
[16] X. Q. Zhou, X. Liu, Y. C. Rui, C. R. Chen, H. W. Wu and Z. H. Xu, “Symbiotic Nitrogen Fixation and Soil N Availability under Legume Crops in an Arid Environment,” Journal of Soils and Sediments, Vol. 11, No. 5, 2011, pp. 762-770. doi:10.1007/s11368-011-0353-4
[17] G. Muyzer, E. C. de Waal and A. G. Uitterlinden, “Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA,” Applied and Envrionmental Microbiology, Vol. 59, No. 3, 1993, pp. 695-700.
[18] X. Q. Zhou, C. R. Chen, H. W. Wu and Z. H. Xu, “Dynamics of Soil Extractable Carbon and Nitrogen under Different Cover Crop Residues,” Journal of Soils and Sediments, Vol. 12, No. 6, 2012, pp. 844-853. doi:10.1007/s11368-012-0515-z
[19] G. A. Kowalchuk, D. S. Buma, W. de Boer, P. G. L. Klinkhamer and J. A. van Veen, “Effects of Above-Ground Plant Species Composition and Diversity on the Diversity of Soil-Borne Microorganisms,” Antonie Van Leeuwen- hoek, Vol. 81, No. 1-4, 2002, pp. 509-520. doi:10.1023/A:1020565523615
[20] X. Y. Cui, Y. F. Wang, H. S. Niu, J. Wu, S. P. Wang, E. Schnug, J. Rogasik, J. Fleckenstein and Y. H. Tang, “Effect of Long-Term Grazing on Soil Organic Carbon Content in Semiarid Steppes in Inner Mongolia,” Ecological Research, Vol. 20, No. 5, 2005, pp. 519-527. doi:10.1007/s11284-005-0063-8
[21] D. A. Wardle, “A Comparative Assessment of Factors Which Influence Microbial Biomass Carbon and Nitrogen Levels in Soil,” Biological Reviews, Vol. 67, No. 3, 1992, pp. 321-358. doi:10.1111/j.1469-185X.1992.tb00728.x
[22] N. Fierer, M. S. Strickland, D. Liptzin, M. A. Bradford and C. C. Cleveland, “Global Patterns in Belowground Communities,” Ecology Letters, Vol. 12, No. 11, 2009, pp. 1238-1249. doi:10.1111/j.1461-0248.2009.01360.x
[23] X. Q. Zhou, H. W. Wu, E. Koetz, Z. H. Xu and C. R. Chen, “Soil Labile Carbon and Nitrogen Pools and Microbial Metabolic Diversity under Winter Crops in an Arid Environment,” Applied Soil Ecology, Vol. 53, No. 2, 2012, pp. 49-55. doi:10.1016/j.apsoil.2011.11.002
[24] S. J. Grayston, C. D. Campbell, R. D. Bardgett, J. L. Mawdsley, C. D. Clegg, K. Ritz, B. S. Griffiths, J. S. Rodwell, S. J. Edwards, W. J. Davies, D. J. Elston and P. Millard, “Assessing Shifts in Microbial Community Structure across a Range of Grasslands of Differing Management Intensity Using CLPP, PLFA and Community DNA Techniques,” Applied Soil Ecology, Vol. 25, No. 1, 2004, pp. 63-84. doi:10.1016/S0929-1393(03)00098-2
[25] L. P. Liu and Y. N. Liao, “Biological Charateristics and Biodiversity of the Soil Microorganisms in Leymus Chinensis Steppe and Stipa Grandis Steppe under Different Grazing Intensities,” In: L. P. Liu and Y. N. Liao, Eds., Inner Mongolia Grassland Ecosystem Research Station Research on Grassland Ecosystem, Scientific Press, Beijing, pp. 13-22.
[26] S. M. Barns, S. L. Takala and C. R. Kuske, “Wide Distribution and Diversity of Members of the Bacterial Kingdom Acdobacterium in the Environment,” Applied and Environmental Microbiology, Vol. 65, No. 4, 1999, pp. 1731-1737.
[27] E. Smit, P. Leeflang, S. Gommans, J. van den Broek, S. van Mil and K. Wernars, “Diversity and Seasonal Fluctuations of the Dominant Members of the Bacterial Soil Community in a Wheat Field as Determined by Cultivation and Molecular Methods,” Applied and Environmental Microbiology, Vol. 67, No. 5, 2001, pp. 2284- 2291. doi:10.1128/AEM.67.5.2284-2291.2001
[28] H. Y. Sun, S. P. Deng and W. R. Raun, “Bacterial Community Structure and Diversity in a Century-Old Manure-Treated Agroecosystem,” Applied and Environmental Microbiology, Vol. 70, No. 2004, pp. 5868-5874. doi:10.1128/AEM.70.10.5868-5874.2004

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.