Low Temperature Growth of Hydrogenated Silicon Prepared by PECVD from Argon Diluted Silane Plasma


In order to contribute to the understanding of the optoelectronics properties of hydrogenated nanocrystalline silicon thin films, a detailed study has been conducted. The samples were deposited by 13.56 MHz PECVD (Plasma-Enhanced Chemical Vapor Deposition) of silane argon mixture. The argon dilution of silane for all samples studied was 96% by volume. The substrate temperature was fixed at 200oC. The influence of depositions parameters on optical proprieties of samples was studied by UV-Vis-NIR spectroscopy. The structural evolution was studied by Raman spectroscopy and X-ray diffraction (XRD). Intrinsic-layer samples depositions were made in this experiment in order to obtain the transition from the amorphous to crystalline phase materials. The deposition pressure varied from 400 mTorr to 1400 mTorr and the rf power from 50 to 250 W. The structural evolution studies show that beyond 200 W, we observed an amorphous-nanocrystalline transition, with an increase in crystalline fraction by increasing rf power and working pressure. Films near the amorphous to nanocrystalline transition region are grown at reasonably high deposition rates (~10 /s), which are highly desirable for the fabrication of cost effective devices. The deposition rate increases with increasing rf power and process pressure. Different crystalline fractions (21% to 95%) and crystallite size (6 - 16 nm) can be achieved by controlling the process pressure and rf power. These structural changes are well correlated to the variation of optical proprieties of the thin films.

Share and Cite:

R. Amrani, P. Abboud, L. Chahed and Y. Cuminal, "Low Temperature Growth of Hydrogenated Silicon Prepared by PECVD from Argon Diluted Silane Plasma," Crystal Structure Theory and Applications, Vol. 1 No. 3, 2012, pp. 62-67. doi: 10.4236/csta.2012.13012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. E. Spear and P. G. LeComber, “Substitutional Doping of Amorphous Silicon,” Solid State Communications, Vol. 17, No. 9, 1975, pp. 1193-1196. doi:10.1016/0038-1098(75)90284-7
[2] D. L. Staebler and C. R. Wronki, “Reversible Conductivity Changes in Discharge—Produced Amorphous Si,” Applied Physics Letters, Vol. 31, No. 4, 1977, 3 p. doi:10.1063/1.89674
[3] M. Ito, C. Koch, V. Svrcek, M. B. Schubert and J. H. Werner, “Silicon Thin Film Solar Cells Deposited under 80?C,” Thin Solid Films, Vol. 383, No. 1-2, 2001, pp. 129-131. doi:10.1016/S0040-6090(00)01590-X
[4] A. V. Shah, J. Meier, E. Vallat-Sauvan, N. Wyrsch, U. Kroll, C. Droz and U. Graf, “Material and Solar Cell Research in Microcrystalline Silicon,” Solar Energy Materials & Solar Cells, Vol. 78, No. 1-4, 2003, pp. 469-491.
[5] J. Meier, R. Fluckiger, H. Keppner and A. V. Shah, “Complete Microcrystalline p-i-n Solar Cell—Crystalline or Amorphous Cell Behavior?” Applied Physics Letters, Vol. 65, No. 7, 1994, p. 860. doi:10.1063/1.112183
[6] C. H. Lee, A. Sazonov and A. Nathan, “High-Mobility Nanocrystalline Silicon Thin-Film Transistors Fabricated by Plasma-Enhanced Chemical Vapor Deposition,” Applied Physics Letters, Vol. 86, No. 22, 2005, Article ID: 222106. doi:10.1063/1.1942641
[7] I. C. Cheng, S. Allen and S. Wagner, “Evolution of Nano-crystalline Silicon Thin Film Transistor Channel Layers,” Journal of Non-Crystalline Solids, Vol. 720, No. 1, 2004, pp. 338-340.
[8] P. R. i Cabarrocas, R. Brenot, P. Bulkin, R. Vanderhaghen, B. Drevillon and I. French, “Stable Microcrystalline Silicon Thin-Film Transistors Produced by the Layer-by-Layer Technique,” Journal of Applied Physics, Vol. 86, No. 12, 1999, p. 7079. doi:10.1063/1.371795
[9] A. Shah, E. Vallat-Sauvain, P. Torres, J. Meier, U. Kroll, C. Hof, C. Droz, M. Goerlitzer, N. Wyrsch and M. Vanecek, “Intrinsic Microcrystalline Silicon (μc-Si:H) Deposited by VHF-GD (Very High Frequency-Glow Discharge): A New Material for Photovoltaics and Optoelectronics,” Materials Science and Engineering: B, Vol. 69-70, 2000, pp. 219-226. doi:10.1016/S0921-5107(99)00299-8
[10] Z. Remes, “Study of Defects and Microstructure of Amorphous and Microcrystalline Silicon Thin Films and Poly-crystalline Diamond Using Optical Methods,” Ph.D. Thesis, Charles University, Prague, 1999.
[11] R. Amrani, D. Benlekehal, R. Baghdad, D. Senouci, A. Zeinert, K. Zellama, L. Chahed, J. D. Sib and Y. Bouizem, “Low-Temperature Growth of Nanocrystalline Silicon Films Prepared by RF Magnetron Sputtering: Structural and Optical Studies,” Journal of Non-Crystalline Solids, Vol. 354, No. 19-25, 2008, pp. 2291-2295. doi:10.1016/j.jnoncrysol.2007.10.044
[12] F. Siebke, S. Yata, Y. Hishikawa and M. Tanaka, “Correlation between Structure and Optoelectronic Properties of Undoped Microcrystalline Silicon,” Journal of Non-Crystalline Solids, Vol. 227-230, No. 2, 1998, pp. 977-981. doi:10.1016/S0022-3093(98)00261-0
[13] A. Matsuda, “Thin-Film Silicon—Growth Process and Solar Cell Application,” Japanese Journal of Applied Physics, Vol. 43, 2004, pp. 7909-7920. doi:10.1143/JJAP.43.7909
[14] R. A. Street, “Large Area Electronics, Applications and Requirements,” Physica Status Solidi A, Vol. 166, No. 2, 1998, pp. 695-705. doi:10.1002/(SICI)1521-396X(199804)166:2<695::AID-PSSA695>3.0.CO;2-U
[15] J. L. Dorier, C. Hollenstein and A. A. Howling, “Powder Dynamics in Very High Frequency Silane Plasmas,” Journal of Vacuum Science & Technology A, Vol. A10, No. 4, 1992, pp. 1048-1052. doi:10.1116/1.578200
[16] J. L. Dorier, C. Hollenstein and A. A. Howling, “Spatiotemporal Powder Formation and Trapping in Radio Frequency Silane Plasmas Using Two-Dimensional Polarization—Sensitive Laser Scattering,” Journal of Vacuum Science & Technology A, Vol. 13, No. 3, 1995, pp. 918-928. doi:10.1116/1.579852
[17] A. A. Howling, J. L. Dorier, C. Hollenstein, U. Kroll and F. Finger, “Frequency Effects in Silane Plasmas for Plasma Enhanced Chemical Vapor Deposition,” Journal of Vacuum Science & Technology A, Vol. 10, No. 4, 1992, pp. 1080-1085. doi:10.1116/1.578205
[18] J. L. Dorier, “Genèse, Croissance et Conséquences de Particules Dans les Plasmas en Silane à Basse Pression et Basse Température,” Ph.D. Thesis, 1996.
[19] A. Bouchoule, “Dusty Plasma: Physics, Chemistry and Technological Impacts in Plasma Processing,” Wiley, New York, 1999.
[20] S. Kasap and P. Capper, “Springer Handbook of Electronic and Photonic Materials,” Springer Publication, 2006.
[21] R. Swanpoel, “Determination of the Thickness and Optical Constants of Amorphous Silicon,” Journal of Physics E: Scientific Instruments, Vol. 16, No. 12, 1983, pp. 1214-1222. doi:10.1088/0022-3735/16/12/023
[22] S. H. Wemple and M. Didomenico, “Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials,” Physical Review B, Vol. 3, No. 4, 1971, pp. 1338-1351. doi:10.1103/PhysRevB.3.1338
[23] R. Amrani, F. Pichot, J. Podlecki, A. Foucaran, L. Chahed and Y. Cuminal, “Optical and Structural Proprieties of nc-Si:H Prepared by Argon Diluted Silane PECVD,” Journal of Non-Crystalline Solids, Vol. 358, No. 17, 2012, pp. 1978-1982. doi:10.1016/j.jnoncrysol.2012.01.022
[24] S. Veprek, F. A Sarott and Z. Iqbal, “Effect of Grain Boundaries on the Raman Spectra, Optical Absorption, and Elastic Light Scattering in Nanometer-Sized Crystalline Silicon,” Physical Review B, Vol. 36, No. 6, 1987, p. 3444.
[25] H. S. Mavi, A. K. Shukla, S. C. Abbi and K. P. Jain, “Raman Study of Amorphous to Microcrystalline Phase Transition in cw Laser Annealed a-Si:H Films,” Journal of Physic Science, Vol. 66, No. 11, 1989, p. 5322. doi:10.1063/1.343723
[26] Y. He, Y. Wei, G. Zheng, M. Yu and M. Liu, “An Exploratory Study of the Conduction Mechanism of Hydrogenated Nanocrystalline Silicon Films,” Journal of Applied Physics, Vol. 82, No. 7, 1997, p. 3408. doi:10.1063/1.365656
[27] Y. He, C. Yin, G. Cheng, L. Wang, X. Liu and G. H. Hu, “The Structure and Properties of Nanosize Crystalline Silicon Films,” Journal of Applied Physics, Vol. 75, No. 2, 1994, pp. 797-803. doi:10.1063/1.356432
[28] G. Yue, J. D. Lorentzien, J. Lin, D. Han and Q. Wang, “Photoluminescence and Raman Studies in Thin-Film Materials: Transition from Amorphous to Microcrystal-line Silicon,” Applied Physics Letters, Vol. 75, No. 4, 1988, pp. 492-494. doi:10.1063/1.124426
[29] D. Beeman, R. Tsu and M. F. Tporpe, “Structural Information from the Raman Spectrum of Amorphous Silicon,” Physical Review B, Vol. 32, No. 2, 1985, pp. 874-878. doi:10.1103/PhysRevB.32.874
[30] P. Scherrer, “Bestimmung der Gr?sse und Derinneren Struktur von Kolloidteilchen Mittels R?ntgenstrahlen,” Nachrichten von der Gesellschaft der Wissenschaften zu G?ttingen, Mathematisch-Physikalische Klasse, Vol. 26, No. 1, 1918, pp. 98-100.
[31] J. Tauc, “Optical Properties of Solids,” Abeles, North Holland, Amsterdam, 1972.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.