In Vitro Characterization of the Efficacy and Safety Profile of a Proprietary Ajuga Turkestanica Extract

Abstract

Ajuga Turkestanica, an herbaceous flowering species in the mint family, has been traditionally used in Turkeyand Uzbekistan for heart disease, muscle aches and stomach problems. Due to its high levels of phytoecdysteroids (particularly the characteristic C-11-hydroxylated Turkesterone), anabolic properties have also been reported. The aim of our study was to screen for early signs of efficacy and safety of a proprietary Ajuga turkestanica extract (ATE) using in vitro models. C2C12 mouse myotube cell line was used to study potential effects on viability and gene modulation. Cell viability was evaluated with different concentrations [0.2 - 200 ppm (mg/L)] of ATE. Gene modulation was assessed by quantitative polymerase chain reaction (qRT-PCR) after 6h incubation (ATE vs. the androgenic anabolic steroid methandrostenolone). Total androgenic activity was measured using the A-SCREEN bioassay. Ultra-high performance liquid chromatography analysis showed good correlation between the phytochemical profile of the native plant and our ATE. C2C12 mouse myotube cells treated with ATE experienced no significant loss of viability (concentrations 0.2 - 200 ppm, 1 - 24 hs, p > 0.05). qRT-PCR array analysis showed significant (p < 0.05) down regulation of Caspase-3 (2-fold) and Myostatin (4-fold). The extract showed no androgenic activity within the dose range used. Our results indicate the potential for an ATE to support muscle mass without typical androgenic side effects of synthetic anabolic drugs.

Share and Cite:

J. Zubeldia, A. Hernández-Santana, M. Jiménez-del-Rio, V. Pérez-López, R. Pérez-Machín and J. García-Castellano, "In Vitro Characterization of the Efficacy and Safety Profile of a Proprietary Ajuga Turkestanica Extract," Chinese Medicine, Vol. 3 No. 4, 2012, pp. 215-222. doi: 10.4236/cm.2012.34031.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. H. Grace, D. M. Cheng, I. Raskin and M. A. Lila, “Neo-Clerodane Diterpenes from Ajuga Turkestanica,” Phytochemistry Letters, Vol. 1, No. 2, 2008, pp. 81-84. doi:10.1016/j.phytol.2008.03.004
[2] I. T. Abdukadirov, M. R. Yakubova, Kh. R. Nuriddinov, A. U. Mamatkhanov and M. T. Turakhozhaev, “Ecdysterone and Turkesterone in Ajuga turkestanica Determined by HLPC,” Chemistry of Natural Compounds, Vol. 41, No. 4, 2005, pp. 475-476. doi:10.1007/s10600-005-0184-x
[3] N. Sh. Ramazanov, “Phytoecdyesteroids and Other Biologically Active Compounds from Plants of the Genus Ajuga,” Chemistry of Natural Compounds, Vol. 41, No. 4, 2005, pp. 361-369. doi:10.1007/s10600-005-0153-4
[4] B. Z. Usmanov, M. B. Gorovits and N. K. Abubakirov, “Phytoecdysones of Ajuga turkestanica III. The Structure of Turkesterone,” Chemistry of Natural Compounds, Vol. 4, No. 11, 1975, pp. 466-470.
[5] I. Machackova, M. Vagner and K. Slama, “Comparison between the Effects of 20-Hydroxyecdysone and Phytohormones on Growth and Development in Plants,” European Journal of Entomolology, Vol. 92, No. 1, 1995, pp. 309-316.
[6] I. Soriano, I. Riley, M. Potter and W. Bowers, “Phytoecdysteroids: A Novel Defense against Plant-Parasitic Nematodes,” Journal of Chemical Ecolology, Vol. 30, No. 10, 2004, pp. 1885-1899. doi:10.1023/B:JOEC.0000045584.56515.11
[7] H. Chiang, J. Wang and R. Wu, “Immunomodulating Effects of the Hydrolysis Products of Formosanin C and Beta-Ecdysone from Paris formosana Hayata,” Anticancer Research, Vol. 12, No. 5, 1992, pp. 1475-1478.
[8] A. G. Kurmukov and O. A. Ermishina, “Effect of Ecdysterone on Experimental Arrhythmias, Changes in Hemodynamics and Contractility of the Myocardium Produced by a Coronary Artery Occlusion,” Farmakol Toksikol (Moscow), Vol. 54, No. 1, 1991, pp. 27-29.
[9] R. Lafont and L. Dinan, “Practical Uses for Ecdysteroids in Mammals Including Humans: An Update,” Journal of Insect Science, Vol. 3, No. 7, 2003, pp. 7-36.
[10] V. Syrov, R. Sharapova and A. Kurmukov, “Effect of Ecdysterone on the Hematopoietic Activity on the Laboratory Animals with Experimentally Anemia,” Issues in Obstetrics and Gynecology, Vol. 1, No. 1, 1976, pp. 62-63.
[11] J. Gorelick-Feldman, D. Maclean, N. Ilic, A. Poulev, M. A. Lila, D. Cheng and I. Raskin, “Phytoecdysteroids Increase Protein Synthesis in Skeletal Muscle Cells,” Journal of Agricultural Food and Chemistry, Vol. 56, No. 10, 2008, pp. 3532-3537. doi:10.1021/jf073059z
[12] T. Lang, T. Streeper, P. Cawthon, K. Baldwin, D. R. Taaffe and T. B. Harris, “Sarcopenia: Etiology, Clinical Consequences, Intervention, and Assessment,” Osteoporosis International, Vol. 21, No. 4, pp. 543-559. doi:10.1007/s00198-009-1059-y
[13] P. Srikanthan, A. L. Hevener and A. S. Karlamangla, “Sarcopenia Exacerbates Obesity-Associated Insulin Resistance and Dysglycemia: Findings from the National Health and Nutrition Examination Survey III,” PLoS One, Vol. 5, No. 5, 2010, p. e10805. doi:10.1371/journal.pone.0010805
[14] Y. Elkina, S. von Haehling, S. D. Anker and J. Springer, “The Role of Myostatin in Muscle Wasting: An Overview,” Journal of Cachexia, Sarcopenia and Muscle, Vol. 2, No. 3, 2011, pp. 43-151.
[15] L. A. Burton and D. Sumukada, “Optimal Management of Sarcopenia,” Clinical Interventions in Aging, Vol. 5, 2010, pp. 217-228.
[16] Y. Ohira, Y. Matsuoka, F. Kawano, A. Ogura, Y. Higo, T. Ohira, M. Terada, Y. Oke and N. Nakai, “Effects of Creatine and Its Analog, β-Guanidinopropionic Acid, on the Differentiation of and Nucleoli in Myoblasts,” Bioscience, Biotechnology, and Biochemistry, Vol. 75, No. 6, 2011, pp. 1085-1089. doi:10.1271/bbb.100901
[17] R. E. Erb and M. H. Ehlers, “Resazurin Reducing Time as an Indicator of Bovine Semen Capacity,” Journal of Dairy Science, Vol. 33, No. 12, 1950, pp. 853-864. doi:10.3168/jds.S0022-0302(50)91981-3
[18] S. Burattini, P. Ferri, M. Battistelli, R. Curci, F. Luchetti and E. Falcieri, “C2C12 Murine Myoblasts as a Model of Skeletal Muscle Development: Morpho-Functional Characterization,” European Journal of Histochemistry, Vol. 48, No. 3, 2004, pp. 23-33.
[19] T. Kislinger, A. O. Gramolini, Y. Pan, K. Rahman, D. H. MacLennan, A. Emili, “Proteome Dynamics during C2C12 Myoblast Differentiation,” Molecular & Cellular Proteomics, Vol. 4, No. 7, 2005, pp. 887-901. doi:10.1074/mcp.M400182-MCP200
[20] N. S. Tannu, V. K. Rao, R. M. Chaudhary, F. Giorgianni, A. E. Saeed, Y. Gao and R. Raghow, “Comparative Proteomes of the Proliferating C2C12 Myoblasts and Fully Differentiated Myotubes Reveal the Complexity of the Skeletal Muscle Differentiation Program,” Molecular & Cellular Proteomics, Vol. 3, No. 11, 2004, pp. 1065-1082. doi:10.1074/mcp.M400020-MCP200
[21] X. H. Wang, L. Zhang, W. E. Mitch, J. M. LeDoux, J. Hu and J. Du, “Caspase-3 Cleaves Specific 19 S Proteasome Subunits in Skeletal Muscle Stimulating Proteasome Activity,” The Journal of Biological Chemistry, Vol. 285, No. 28, 2010, pp. 21249-21257. doi:10.1074/jbc.M109.041707
[22] S. Bhatnagar, A. Mittal, S.K. Gupta and A. Kumar, “TWEAK Causes Myotube Atrophy through Coordinated Activation of Ubiquitin-Proteasome System, Autophagy, and Caspases,” Journal of Cellular Physiology, Vol. 227, No. 3, 2012, pp. 1042-1051. doi:10.1002/jcp.22821
[23] S. J. Lee, L. A. Reed, M. W. Davies, S. Girgenrath, M. E. Goad, K. N. Tomkinson, J. F. Wright, C. Barker, G. Ehrmantraut, J. Holmstrom, B. Trowell, B. Gertz, M. S. Jiang, S. M. Sebald, M. Matzuk, E. Li, L. F. Liang, E. Quattlebaum, R. L. Stotish and N. M. Wolfman, “Regulation of Muscle Growth by Multiple Ligands Signaling through Activin Type II Receptors,” Proceedings of the National Academy of Science US, Vol. 102, No. 50, 2005, pp. 18117-18122. doi:10.1073/pnas.0505996102
[24] I. Chelh, B. Meunier, B. Picard, M. J. Reecy, C. Chevalier, J. F. Hocquette and I. Cassar-Malek, “Molecular Profiles of Quadriceps Muscle in Myostatin-Null Mice Reveal PI3K and Apoptotic Pathways as Myostatin Targets,” BMC Genomics, Vol. 10, 2009, p. 196. doi:10.1186/1471-2164-10-196
[25] T. Thum and J. Springer, “Breakthrough in Cachexia Treatment through a Novel Selective Androgen Receptor Modulator?” Journal of Cachexia, Sarcopenia and Muscle, Vol. 2, No. 3, 2011, pp. 121-123. doi:10.1007/s13539-011-0040-8
[26] J. T. Dalton, K. G. Barnette, C. E. Bohl, M. L. Hancock, D. Rodriguez, S. T. Dodson, R. A. Morton and M. S. Steiner, “The Selective Androgen Receptor Modulator GTx-024 (Enobosarm) Improves Lean Body Mass and Physical Function in Healthy Elderly Men and Postmenopausal Women: Results of a Double-Blind, Placebo-Controlled Phase II Trial,” Journal of Cachexia Sarcopenia Muscle, Vol. 2, No. 3, 2011, pp. 153-161. doi:10.1007/s13539-011-0034-6
[27] M. Báthori, N. Tóth, A. Hunyadi, A. Márki and E. Zádor, “Phytoecdysteroids and Anabolic-Androgenic Steroids-Structure and Effects on Humans,” Current Medicinal Che- mistry, Vol. 15, No. 1, 2008, pp. 75-91. doi:10.2174/092986708783330674
[28] J. Szelei, J. Jimenez, A. M. Soto, M. F. Luizzi and C. Sonnenschein, “Androgen-Induced Inhibition of Proliferation in Human Breast Cancer MCF7 Cells Transfected with Androgen Receptor,” Endocrinology, Vol. 138, No. 4, 1997, pp. 1406-1412. doi:10.1210/en.138.4.1406
[29] A. M. Soto, J. M. Calabro, N. V. Prechtl, A. Y. Yau, E. F. Orlando, A. DaxenbergerA, A. S. Kolok, L. J. Guillette Jr., B. le Bizec, I. G. Lange and C. Sonnenschein, “Androgenic and Estrogenic Activity in Water Bodies Receiving Cattle Feedlot Effluent in Eastern Nebraska, USA,” Environmental Health Perspectives, Vol. 112, No. 3, 2004, pp. 346-352. doi:10.1289/ehp.6590

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.