Towards a Mathematical Model for Elastic Wave Propagation in Granular Materials

DOI: 10.4236/eng.2012.412A123   PDF   HTML   XML   5,025 Downloads   7,072 Views   Citations

Abstract

A theoretical model for the propagation of acoustic waves in dry granular media is presented within the framework of the nonlinear granular elasticity. An essential ingredient is the dependence of the elastic moduli on compression. For the purpose of illustration, we analyze the case of a time-harmonic plane wave propagation under isotropic compression. We derive explicit relations for the wave speed dependence with the confining pressure. The present approach provides an accurate description of acoustic wave propagation in granular packings and represents a powerful tool to interpret the results of current experiments.

Share and Cite:

L. Trujillo, V. Torres, F. Peniche and L. Sigalotti, "Towards a Mathematical Model for Elastic Wave Propagation in Granular Materials," Engineering, Vol. 4 No. 12A, 2012, pp. 972-979. doi: 10.4236/eng.2012.412A123.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. M. Jaeger, S. R. Nagel and R. P. Behringer, “Granular Solids, Liquids, and Gases,” Review of Modern Physics, Vol. 68, No. 4, 1996, pp. 1259-1273. doi:10.1103/RevModPhys.68.1259
[2] L. D. Landau and E. M. Lifshitz, “Theory of Elasticity,” Pergamon Press, New York, 1970.
[3] S. Luding, “Granular Media: Information Propagation,” Nature, Vol. 435, No. 7039, 2005, pp. 159-160. doi:10.1038/435159a
[4] T. S. Majmudar and R. P. Behringer, “Contact Force Measurements and Stress-Induced Anisotropy in Granular Materials,” Nature, Vol. 435, No. 7045, 2005, pp. 10791082. doi:10.1038/nature03805
[5] X. Jia, C. Caroli and B. Velicky, “Ultrasound Propagation in Externally Stressed Granular Media,” Physical Review Letters, Vol. 82, No. 9, 1999, pp. 1863-1866. doi:10.1103/PhysRevLett.82.1863
[6] X. Jia, “Codalike Multiple Scattering of Elastic Waves in Dense Granular Media,” Physical Review Letters, Vol. 93, No. 15, 2004, pp. 154303: 1-4.
[7] X. Jia, J. Laurent, Y. Khidas and V. Langlois, “Sound Scattering in Dense Granular Media,” Chinese Science Bulletin, Vol. 54, No. 23, 2009, pp. 4327-4336. doi:10.1007/s11434-009-0609-1
[8] T. Brunet, X. Jia and P. Mills, “Mechanisms for Acoustic Absorption in Dry and Weakly Wet Granular Media,” Physical Review Letters, Vol. 101, No. 13, 2008, pp. 138001: 1-4.
[9] B. Gilles and C. Coste, “Low-Frequency Behavior of Beads Constrained on a Lattice,” Physical Review Letters, Vol. 90, No. 17, 2003, pp. 174302: 1-4.
[10] H. Hertz, “über die Berührung Fester Elastischer K?rper,” Journal of Reine Angewandte Mathematik, Vol. 92, No. 1, 1882, p. 56171.
[11] Y. Jiang and M. Liu, “Granular Elasticity without the Coulomb Condition,” Physical Review Letters, Vol. 91, No. 14, 2003, pp. 144301: 1-4.
[12] Y. Jiang and M. Liu, “A Brief Review of ‘Granular Elasticity’,” European Physical Journal E, Vol. 22, No. 3, 2007, pp. 255-260. doi:10.1140/epje/e2007-00009-x
[13] Y. Jiang and M. Liu, “Granular Solid Hydrodynamics,” Granular Matter, Vol. 11, No. 3, 2009, pp. 139-156. doi:10.1007/s10035-009-0137-3
[14] D. Serero, G. Rydellet, E. Clément and D. Levine, “Stress Response Function of a Granular Layer: Quantitative Comparison between Experiments and Isotropic Elasticity,” European Physical Journal E, Vol. 6, No. 2, 2001, pp. 169-179. doi:10.1007/s101890170019
[15] W. G. Ellenbroek, M. van Hecke and W. van Saarloos, “Jammed Frictionless Disks: Connecting Global and Local Response,” Physical Review E, Vol. 80, No. 6, 2009, pp. 061307: 1-18.
[16] C. Goldenberg and I. Goldhirsch, “Force Chains, Microelasticity and Macroelasticity,” Physical Review Letters, Vol. 89, No. 8, 2002, pp. 0843021: 4.
[17] I. Goldhirsch and C. Goldenberg, “On the Microscopic Foundations of Elasticity,” European Physical Journal E, Vol. 9, No. 3, 2002, pp. 245-251. doi:10.1140/epje/i2002-10073-5
[18] C. Goldenberg and I. Goldhirsch, “Small and Large Scale Granular Statics,” Granular Matter, Vol. 6, No. 2-3, 2004, pp. 87-96. doi:10.1007/s10035-004-0165-y
[19] C. Goldenberg and I. Goldhirsch, “Friction Enhances Elasticity in Granular Solids,” Nature, Vol. 435, No. 7039, 2005, pp. 188-191. doi:10.1038/nature03497
[20] G. R. Liu and M. B. Liu, “Smoothed Particle Hydrodynamics: A Meshfree Particle Method,” World Scientific, Singapore City, 2003.
[21] T. S. Majmudar, M. Sperl, S. Luding and R. P. Behringer, “Jamming Transition in Granular Systems,” Physical Review Letters, Vol. 98, No. 5, 2007, pp. 058001: 1-4.
[22] D. O. Krimer, M. Pfitzner, K. Br?uer, Y. Jiang and M. Liu, “Granular Elasticity: General Considerations and the Stress Dip in Sand Piles,” Physical Review E, Vol. 74, No. 6, 2006, pp. 061310: 1-10.
[23] K. Br?uer, M. Pfitzner, O. Krimer, Y. Jiang and M. Liu, “Granular Elasticity: Stress Distributions in Silos and Under Point Loads,” Physical Review E, Vol. 74, No. 6, 2006, pp. 061311: 1-10.
[24] J. D. Goddard, “Nonlinear Elasticity and Pressure-Dependent Wave Speeds in Granular Media,” Proceedings of the Royal Society of London A, Vol. 430, No. 1878, 1990, pp. 105-131.
[25] P.-G. de Gennes, “Static Compression of a Granular Medium: The ‘Soft Shell’ Model,” Europhysics Letters, Vol. 35, No. 2, 1996, pp. 145-149. doi:10.1209/epl/i1996-00546-1
[26] K. L. Johnson, K. Kendall and A. D. Roberts, “Surface Energy and the Contact of Elastic Solids,” Proceedings of the Royal Society of London A, Vol. 324, No. 1558, 1971, pp. 301-313. doi:10.1098/rspa.1971.0141

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.