Third-Order Corrections and Mass-Shedding Limit of Rotating Neutron Stars Computed By a Complex-Plane Strategy


We implement the so-called “complex-plane strategy” for computing general-relativistic polytropic models of uniformly rotating neutron stars. This method manages the problem by performing all numerical integrations, required within the framework of Hartle’s perturbation method, in the complex plane. We give emphasis on computing corrections up to third order in the angular velocity, and the mass-shedding limit. We also compute the angular momentum, moment of inertia, rotational kinetic energy, and gravitational potential energy of the models considered.

Share and Cite:

I. Sfaelos and V. Geroyannis, "Third-Order Corrections and Mass-Shedding Limit of Rotating Neutron Stars Computed By a Complex-Plane Strategy," International Journal of Astronomy and Astrophysics, Vol. 2 No. 4, 2012, pp. 210-217. doi: 10.4236/ijaa.2012.24027.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] V. S. Geroyannis and I. E. Sfaelos, “Numerical Treatment of Rotating Neutron Stars Simulated by General-Relativ- istic Polytropic Models: A Complex-Plane Strategy,” International Journal of Modern Physics C, Vol. 22, No. 3, 2011, pp. 219-248. doi:10.1142/S0129183111016269
[2] V. S. Geroyannis, “A Complex-Plane Strategy for Computing Rotating Poly-Tropic Models: Efficiency and Accuracy of the Complex First-Order Perturbation Theory,” Astrophysical Journal, Vol. 327, 1988, pp. 273-283. doi:10.1086/166188
[3] V. S. Geroyannis, “A Complex-Plane Strategy for Computing Rotating Poly-Tropic Models: Numerical Results for Strong and Rapid Differential Rotation,” Astrophysical Journal, Vol. 350, 1990, pp. 355-366. doi:10.1086/168389
[4] J. B. Hartle, “Slowly Rotating Relativistic Stars I. Equations of Structure,” Astrophysical Journal, Vol. 150, 1967, pp. 1005-1029. doi:10.1086/149400
[5] J. B. Hartle and K. S. Thorne, “Slowly Rotating Relativistic Stars II. Models for Neutron Stars and Supemassive Stars,” Astrophysical Journal, Vol. 153, 1968, pp. 807- 834. doi:10.1086/149707
[6] J. B. Hartle, “Slowly Rotating Relativistic Stars-IX. Moments of Inertia of Rotationally Distorted Stars,” Astrophysics and Space Science, Vol. 24, No. 2, 1973, pp. 385-405. doi:10.1007/BF02637163
[7] S. Bonazzola, E. Gourgoulhon, M. Salgado and J. A. Marck, “Axisymmetric Rotating Relativistic Bodies: A New Numerical Approach for Exact Solutions,” Astronomy and Astrophysics, Vol. 278, No. 2, 1993, pp. 421- 443.
[8] M. Salgado, S. Bonazzola, E. Gourgoulhon and P. Haensel, “High Precision Rotating Neutron Star Models I. Analysis of Neutron Star Properties,” Astronomy and Astrophysics, Vol. 291, No. 1, 1994, pp. 155-170.
[9] G. B. Cook, S. L. Shapiro and S. A. Teukolsky, “Rapidly Rotating Neutron Stars in General Relativity: Realistic Equations of State,” Astrophysical Journal, Vol. 424, 1994, pp. 823-845. doi:10.1086/173934
[10] O. Benhar, V. Ferrari, L. Gualtieri and S. Marassi, “Perturbative Approach to the Structure of Rapidly Rotating Neutron Stars,” Physical Review D, Vol. 72, No. 4, 2005, Article ID: 044028. doi:10.1103/PhysRevD.72.044028
[11] J. L. Friedmann, J. R. Ipser and L. Parker, “Rapidly Rotating Neutron Star Models,” Astrophysical Journal, Vol. 304, 1986, pp. 115-139. doi:10.1086/164149
[12] V. S. Geroyannis and A. G. Katelouzos, “Numerical Treatment of Hartle’s Perturbation Method for Differentially Rotating Neutron Stars Simulated by General-Relativistic Polytropic Models,” International Journal of Modern Physics C, Vol. 19, No. 12, 2008, pp. 1863-1908. doi:10.1142/S0129183108013370
[13] P. J. Papasotiriou and V. S. Geroyannis, “ASCILAB Program for Computing General-Relativistic Models of Rotating Neutron Stars by Implementing Hartle’s Perturbation Method,” International Journal of Modern Physics C, Vol. 14, No. 3, 2003, pp. 321-350. doi:10.1142/S0129183103004516
[14] Y. F. Chang, “ATOMFT User Manual Version 3.11,” 1994.
[15] Y. F. Chang and G. Corliss, “ATOMFT: Solving ODEs and DAEs Using Taylor Series,” Computers & Mathematics with Applications, Vol. 28, No. 10-12, 1994, pp. 209-233. doi:10.1016/0898-1221(94)00193-6
[16] Y. F. Chang, “Automatic Solution of Differential Equations,” In: D. L. Colton and R. P. Gilbert, Eds., Constructive and Computational Methods for Differential Equations, Springer, Berlin, Vol. 430, 1974, pp. 61-94.
[17] Y. F. Chang and G. Corliss, “Ratio-Like and Recurrence Relation Tests for Convergence of Series,” Mathematics & Physical Sciences, Vol. 25, No. 4, 1980, pp. 349-359. doi:10.1093/imamat/25.4.349
[18] Y. F. Chang and G. Corliss, “Solving Ordinary Differential Equations Using Taylor Series,” ACM Transactions on Mathematical Software, Vol. 8, No. 2, 1982, pp. 114-144. doi:10.1145/355993.355995
[19] G. Corliss, “READ.ME for ATOMFT Version 3.11 (ATOMFT Compiler, Version 3.11, Copyright (C) 1979-94, Y. F. Chang. Version 3.11 Completed (6/21/93)),” 1994.
[20] G. Corliss, “Integrating ODEs in the Complex Plane Pole Vaulting,” Mathematics Computation, Vol. 35, 1980, pp. 1181-1189.
[21] N. Stergioulas, “Rotating Neutron Stars (RNS) Package,” 1992. rns/index.html

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.