Hereditary Leukemia Due to Rare RUNX1c Splice Variant (L472X) Presents with Eczematous Phenotype

Abstract

Deleterious mutations in the RUNX1 gene cause hereditary leukemia due to a rare syndrome called Familial platelet Disorder with Associated Myeloid Malignancy (FPDMM). We describe the characteristics of a family with FPDMM due to a novel RUNX1 mutation (L472X), located in the most 3-prime end of the gene reported to date. Our 36-year-old proband presented with incidentally detected thrombocytopenia and a family history suggestive of FPDMM. Contrary to previously described families, affected members of our kindred express an eczematous phenotype, reportedly most severe in members who develop leukemia. Pedigree analysis shows that the L472X mutation tracks with thrombocytopenia, acute leukemia, and eczema. The L472X mutation produces a stably expressed RUNX1 protein product with a corresponding decrease in wild type RUNX1 expression. Our data supports the inclusion of eczema in the FPDMM phenotype and suggests the possibility that the RUNX1 L472X mutant causes the type of dominant negative affect that is associated with an elevated risk of leukemia in FPDMM families.

Share and Cite:

A. Sorrell, C. Espenschied, W. Wang, J. Weitzel, S. Chu, P. Parker, J. Saldivar and R. Bhatia, "Hereditary Leukemia Due to Rare RUNX1c Splice Variant (L472X) Presents with Eczematous Phenotype," International Journal of Clinical Medicine, Vol. 3 No. 7, 2012, pp. 607-613. doi: 10.4236/ijcm.2012.37110.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Owen, “Insights into Familial Platelet Disorder with Propensity to Myeloid Malignancy (FPD/AML),” Leukemia Research, Vol. 34, No. 2, 2010, pp. 141-142. doi:10.1016/j.leukres.2009.07.037
[2] M. Horwitz, E. L. Goode and G. P. Jarvik, “Anticipation in Familial Leukemia,” American Journal of Human Genetics, Vol. 59, No. 5, 1996, pp. 990-998.
[3] W. J. Song, M. G. Sullivan, R. D. Legare, S. Hutchings, X. Tan, D. Kufrin, et al., “Haploinsufficiency of CBFA2 Causes Familial Thrombocytopenia with Propensity to Develop Acute Myelogenous Leukaemia,” Nature Genetics, Vol. 23, No. 2, 1999, pp. 166-175. doi:10.1038/13793
[4] P. Ganly, L. C. Walker and C. M. Morris, “Familial Mutations of the Transcription Factor RUNX1 (AML1, CBFA2) Predispose to Acute Myeloid Leukemia,” Leukemia & Lymphoma, Vol. 45, No. 1, 2004, pp. 1-10. doi:10.1080/1042819031000139611
[5] C. Preudhomme, A. Renneville, V. Bourdon, N. Philippe, C. Roche-Lestienne, N. Boissel, et al., “High Frequency of RUNX1 Biallelic Alteration in Acute Myeloid Leuke- mia Secondary to Familial Platelet Disorder,” Blood, Vol. 113, No. 22, 2009, pp. 5583-5587. doi:10.1182/blood-2008-07-168260
[6] M. C. Jongmans, R. P. Kuiper, C. L. Carmichael, E. J. Wilkins, N. Dors, A. Carmagnac, et al., “Novel RUNX1 Mutations in Familial Platelet Disorder with Enhanced Risk for Acute Myeloid Leukemia: Clues for Improved Identification of the FPD/AML Syndrome,” Leukemia, Vol. 24, No. 1, 2010, pp. 242-246. doi:10.1038/leu.2009.210
[7] S. van der Crabben, E. van Binsbergen, M. Ausems, M. Poot, M. Bierings and A. Buijs, “Constitutional RUNX1 Deletion Presenting as Non-Syndromic Thrombocytopenia with Myelodysplasia: 21q22 ITSN1 as a Candidate Gene in Mental Retardation,” Leukemia Research, Vol. 34, No. 1, 2010, pp. e8-e12. doi:10.1016/j.leukres.2009.06.030
[8] B. Lages, S. J. Shattil, D. F. Bainton and H. J. Weiss, “Decreased Content and Surface Expression of Alpha-Granule Membrane Protein GMP-140 in One of Two Types of Platelet Alpha Delta Storage Pool Deficiency,” Journal of Clinical Investigation, Vol. 87, No. 3, 1991, pp. 919-929. doi:10.1172/JCI115099
[9] S. B. Dowton, D. Beardsley, D. Jamison, S. Blattner and F. P. Li, “Studies of a Familial Platelet Disorder,” Blood, Vol. 65, No. 3, 1985, pp. 557-563.
[10] C. Y. Ho, B. Otterud, R. D. Legare, T. Varvil, R. Saxena, D. B. DeHart, et al., “Linkage of a Familial Platelet Dis- order with a Propensity to Develop Myeloid Malignancies to Human Chromosome 21q22.1-22.2,” Blood, Vol. 87, No. 12, 1996, pp. 5218-5224.
[11] J. M. Gerrard, E. D. Israels, A. J. Bishop, M. L. Schroeder, L. L. Beattie, A. McNicol, et al., “Inherited Platelet-Storage Pool Deficiency Associated with a High Incidence of Acute Myeloid Leukaemia,” British Journal of Haematology, Vol. 79, No. 2, 1991, pp. 246-255. doi:10.1111/j.1365-2141.1991.tb04529.x
[12] G. Arepally, T. R. Rebbeck, W. Song, G. Gilliland, J. M. Maris and M. Poncz, “Evidence for Genetic Homogeneity in a Familial Platelet Disorder with Predisposition to Acute Myelogenous Leukemia (FPD/AML),” Blood, Vol. 92, No. 7, 1998, pp. 2600-2602.
[13] R. D. Legare, D. Lu, M. Gallagher, C. Ho, X. Tan, G. Barker, et al., “CBFA2, Frequently Rearranged in Leukemia, Is Not Responsible for a Familial Leukemia Syndrome,” Leukemia, Vol. 11, No. 12, 1997, pp. 2111-2119. doi:10.1038/sj.leu.2400852
[14] A. Buijs, P. Poddighe, R. van Wijk, W. van Solinge, E. Borst, L. Verdonck, et al., “A Novel CBFA2 Single-Nucleotide Mutation in Familial Platelet Disorder with Propensity to Develop Myeloid Malignancies,” Blood, Vol. 98, No. 9, 2001, pp. 2856-2858. doi:10.1182/blood.V98.9.2856
[15] J. Michaud, F. Wu, M. Osato, G. M. Cottles, M. Yanagida, N. Asou, et al., “In Vitro Analyses of Known and Novel RUNX1/AML1 Mutations in Dominant Familial Platelet Disorder with Predisposition to Acute Myelogenous Leukemia: Implications for Mechanisms of Pathogenesis,” Blood, Vol. 99, No. 4, 2002, pp. 1364-1372. doi:10.1182/blood.V99.4.1364
[16] L. C. Walker, J. Stevens, H. Campbell, R. Corbett, R. Spearing, D. Heaton, et al., “A Novel Inherited Mutation of the Transcription Factor RUNX1 Causes Thrombo-cytopenia and May Predispose to Acute Myeloid Leukaemia,” British Journal of Haematology, Vol. 117, No. 4, 2002, pp. 878-881. doi:10.1046/j.1365-2141.2002.03512.x
[17] I. Appelmann, T. Linden, A. Rudat, C. Mueller-Tidow, W. E. Berdel and R. M. Mesters, “Hereditary Thrombocytopenia and Acute Myeloid Leukemia: A Common Link Due to a Germline Mutation in the AML1 Gene,” Annals of Hematology, Vol. 88, No. 10, 2009, pp. 1037-1038. doi:10.1007/s00277-009-0722-x
[18] M. Osato, N. Asou, E. Abdalla, K. Hoshino, H. Yamasaki, T. Okubo, et al., “Biallelic and Heterozygous Point Mutations in the Runt Domain of the AML1/PEBP2-Alphab Gene Associated with Myeloblastic Leukemias,” Blood, Vol. 93, No. 6, 1999, pp. 1817-1824.
[19] M. Beri-Dexheimer, V. Latger-Cannard, C. Philippe, C. Bonnet, P. Chambon, V. Roth, et al., “Clinical Phenotype of Germline RUNX1 Haploinsufficiency: From Point Mutations to Large Genomic Deletions,” European Journal of Human Genetics, Vol. 16, No. 8, 2008, pp. 1014-1018. doi:10.1038/ejhg.2008.89
[20] T. Taketani, T. Taki, J. Takita, R. Ono, Y. Horikoshi, Y. Kaneko, et al., “Mutation of the AML1/RUNX1 Gene in a Transient Myeloproliferative Disorder Patient with Down Syndrome,” Leukemia, Vol. 16, No. 9, 2002, pp. 1866-1867. doi:10.1038/sj.leu.2402612
[21] C. J. Owen, C. L. Toze, A. Koochin, D. L. Forrest, C. A. Smith, J. M. Stevens, et al., “Five New Pedigrees with Inherited RUNX1 Mutations Causing Familial Platelet Disorder with Propensity to Myeloid Malignancy,” Blood, Vol. 112, No. 12, 2008, pp. 4639-4645. doi:10.1182/blood-2008-05-156745
[22] M. Shinawi, A. Erez, D. L. Shardy, B. Lee, R. Naeem, G. Weissenberger, et al., “Syndromic Thrombocytopenia and Predisposition to Acute Myelogenous Leukemia Caused by Constitutional Microdeletions on Chromosome 21q,” Blood, Vol. 112, No. 4, 2008, pp. 1042-1047. doi:10.1182/blood-2008-01-135970
[23] T. A. Peterson, A. Adadey, I. Santana-Cruz, Y. Sun, A. Winder and M. G. Kann, “DMDM: Domain Mapping of Disease Mutations,” Bioinformatics, Vol. 26, No. 19, 2010, pp. 2458-2459.
[24] C. Preudhomme, D. Warot-Loze, C. Roumier, N. Grardel-Duflos, R. Garand, J. L. Lai, et al., “High Incidence of Biallelic Point Mutations in the Runt Domain of the AML1/PEBP2 Alpha B Gene in Mo Acute Myeloid Leukemia and in Myeloid Malignancies with Acquired Trisomy 21,” Blood, Vol. 96, No. 8, 2000, pp. 2862-2869.
[25] Y. Imai, M. Kurokawa, K. Izutsu, A. Hangaishi, K. Takeuchi, K. Maki, et al., “Mutations of the AML1 Gene in Myelodysplastic Syndrome and Their Functional Implications in Leukemogenesis,” Blood, Vol. 91, No. 9, 2000, pp. 3154-3160.
[26] J. R. Downing, M. Higuchi, N. Lenny and A. E. Yeoh, “Alterations of the AML1 Transcription Factor in Human Leukemia,” Seminars in Cell & Developmental Biology, Vol. 11, No. 5, 2000, pp. 347-360. doi:10.1006/scdb.2000.0183
[27] S. E. Langabeer, R. E. Gale, S. J. Rollinson, G. J. Morgan and D. C. Linch, “Mutations of the AML1 Gene in Acute Myeloid Leukemia of FAB Types M0 and M7,” Genes, Chromosomes and Cancer, Vol. 34, No. 1, 2002, pp. 24-32. doi:10.1002/gcc.10031
[28] J. E. Churpek, J. S. Garcia, J. Madzo, S. A. Jackson, K. Onel and L. A. Godley, “Identification and Molecular Characterization of a Novel 3’ Mutation in RUNX1 in a Family with Familial Platelet Disorder,” Leukemia & Lymphoma, Vol. 51, No. 10, 2010, pp. 1931-1935. doi:10.3109/10428194.2010.503821
[29] N. Shiba, D. Hasegawa, M. J. Park, C. Murata, A. Matsubara, C. Ogawa, et al., “CBL Mutation in Chronic Myelomonocytic Leukemia Secondary to Familial Plate- let Disorder with Propensity to Develop Acute Myeloid Leukemia (FPD/AML),” Blood, Vol. 119, No. 11, 2011, pp. 2612-2614.
[30] K. Kirito, K. Sakoe, D. Shinoda, Y. Takiyama, K. Kaushansky and N. Komatsu, “A Novel RUNX1 Mutation in Familial Platelet Disorder with Propensity to Develop Myeloid Malignancies,” Haematologica, Vol. 93, No. 1, 2008, pp. 155-156. doi:10.3324/haematol.12050
[31] D. Bluteau, L. Gilles, M. Hilpert, I. Antony-Debre, C. James, N. Debili, et al., “Down-Regulation of the RUNX1-Target Gene NR4A3 Contributes to Hemato- poiesis Deregulation in Familial Platelet Disorder/Acute Myelogenous Leukemia,” Blood, Vol. 118, No. 24, 2011, pp. 6310-6320. doi:10.1182/blood-2010-12-325555
[32] D. Levanon, G. Glusman, T. Bangsow, E. Ben-Asher, D. A. Male, N. Avidan, et al., “Architecture and Anatomy of the Genomic Locus Encoding the Human Leukemia-Associated Transcription Factor RUNX1/AML1,” Gene, Vol. 262, No. 1-2, 2001, pp. 23-33. doi:10.1016/S0378-1119(00)00532-1
[33] Y. Fukushima-Nakase, Y. Naoe, I. Taniuchi, H. Hosoi, T. Sugimoto and T. Okuda, “Shared and Distinct Roles Mediated through C-Terminal Subdomains of Acute Myeloid Leukemia/Runt-Related Transcription Factor Molecules in Murine Development,” Blood, Vol. 105, No. 11, 2005, pp. 4298-4307. doi:10.1182/blood-2004-08-3372
[34] P. Sroczynska, C. Lancrin, V. Kouskoff and G. Lacaud, “The Differential Activities of Runx1 Promoters Define Milestones during Embryonic Hematopoiesis,” Blood, Vol. 114, No. 26, 2009, pp. 5279-5289. doi:10.1182/blood-2009-05-222307
[35] S. Shankar, E. Rytina and N. P. Burrows, “Acute Myeloid Leukaemia Presenting with Eczema,” Clinical and Experimental Dermatology, Vol. 31, No. 4, 2006, pp. 593-594. doi:10.1111/j.1365-2230.2006.02136.x
[36] A. M. Hughes, T. Lightfoot, J. Simpson, P. Ansell, P. A. McKinney, S. E. Kinsey, et al., “Allergy and Risk of Childhood Leukaemia: Results from the UKCCS,” International Journal of Cancer, Vol. 121, No. 4, 2007, pp. 819-824. doi:10.1002/ijc.22702
[37] A. M. Linabery, A. M. Jurek, S. Duval and J. A. Ross, “The Association between Atopy and Childhood/Adole- scent Leukemia: A Meta-Analysis,” American Journal of Epidemiology, Vol. 171, No. 7, 2010, pp. 749-764. doi:10.1093/aje/kwq004
[38] J. Rudant, L. Orsi, F. Menegaux, A. Petit, A. Baruchel, Y. Bertrand, et al., “Childhood Acute Leukemia, Early Common Infections, and Allergy: The ESCALE Study,” American Journal of Epidemiology, Vol. 172, No. 9, 2010, pp. 1015-1027. doi:10.1093/aje/kwq233
[39] R. Escher, P. Wilson, C. Carmichael, R. Suppiah, M. Liu, M. Kavallaris, et al., “A Pedigree with Autosomal Dominant Thrombocytopenia, Red Cell Macrocytosis, and an Occurrence of t(12:21) Positive Pre-B Acute Lympho-blastic Leukemia,” Blood Cells, Molecules, and Diseases, Vol. 39, No. 1, 2007, pp. 107-114. doi:10.1016/j.bcmd.2007.02.009
[40] K. A. Alford, K. Reinhardt, C. Garnett, A. Norton, K. B?hmer, C. von Neuhoff, et al., “Analysis of GATA1 Mutations in Down Syndrome Transient Myeloproliferative Disorder and Myeloid Leukemia,” Blood, Vol. 118, No. 8, 2011, pp. 2222-2238.
[41] M. Daneshpazhooh, T. Mohammad-Javad Nazemi, L. Bigdeloo and M. Yoosefi, “Mucocutaneous Findings in 100 Children with Down Syndrome,” Pediatric Dermatology, Vol. 24, No. 3, 2007, pp. 317-320. doi:10.1111/j.1525-1470.2007.00412.x
[42] Q. Zhu, M. Zhang, R. Blaese, J. Derry, A. Junker, U. Francke, et al., “The Wiskott-Aldrich Syndrome and X-Linked Congenital Thrombocytopenia Are Caused by Mutations of the Same Gene,” Blood, Vol. 86, No. 10, 1995, pp. 3797-3804

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.