Effect of Concentration on the Optical and Solid State Properties of CoO Thin Films Deposited Using the Aqueous Chemical Growth (ACG) Method

Abstract

Thin films of Cobalt(II) Oxide were deposited from equimolar concentrations of Cobalt Chloride, and Hexamethylenetetramine on clean glass substrates using the Aqueous Chemical Growth method in order to determine the effect of precursor concentration on their optical and solid state properties. The analytical tools used for the study include, Rutherford Back Scattering (RBS) spectroscopy for elemental analysis and determination of film thickness, X-Ray Difftraction (XRD) for crystallographic structure, a UV-VIS spectrophotometer for optical and other solid state properties and a photomicroscope for photomicrographs. The results indicate that an increase in the concentration of precursor materials makes ACG CoO thin film a better absorber of ultraviolet radiation, a better transmitter of infra-red radiation, a reflector of visible radiation and a material having an increased band gap. The ACG CoO thin film deposited from 0.1 M precursor concentration was found to be a suitable material for the construction of thermographic devices, poultry houses etc. It can also serve as window layer in solar cells among other optoelectronic applications.

Share and Cite:

S. Mammah, F. Opara, F. Sigalo, V. Omobo-Pepple, F. Ezema and S. Ezugwu, "Effect of Concentration on the Optical and Solid State Properties of CoO Thin Films Deposited Using the Aqueous Chemical Growth (ACG) Method," Advances in Materials Physics and Chemistry, Vol. 2 No. 4, 2012, pp. 232-238. doi: 10.4236/ampc.2012.24035.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. G. Greanqvist, “Handbook of Inorganic Electrochemical Materials,” Elsevier, Amsterdam, 1995.
[2] M. Ando, T. Ko-bayashi and M. Haruta, “Combined Effects of Small Gold Particles on the Optical Gas Sensing by Transition Metal Oxide Films,” Catalysis Today, Vol. 36, No. 1, 1997, pp. 135-141. doi:10.1016/S0920-5861(96)00206-4
[3] M. Ando, T. Ko-bayashi, S. Iijima and M. Haruta, “High Impact Applications, Properties and Synthesis of Axciting New Materials,” Journal of Materials Chemistry, Vol. 7, No. 9, 1997, pp. 1779-1783. doi:10.1039/a700125h
[4] D. Barreca, C. Massignan, S. Dao-lio, M. Fabrizio, C. Piccirillo, L. Armelao and E. Tondello, “Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt(II) Precursor by Chemical Vapor Deposition,” Chemistry of Materials, Vol. 13, No. 2, 2001, pp. 588-593.doi:10.1021/cm001041x
[5] E. Hosono, S. Fujihara, I. Honma, M. Ichihara and H. Zhou, “Corrigendum to Synthesis of the CoOOH Fine Nanoflake Film with the High Rate Capacitance Property,” Journal of Power Sources, Vol. 158, No 1, 2006, pp. 779-783doi:10.1016/j.jpowsour.2005.09.052
[6] E. Barrera, I. González and T. Viveros, “A New Cobalt Oxide Electrodeposit Bath for Solar Absorbers,” Solar Energy Materials and Solar Cells, Vol. 51, No. 1, 1998, pp. 69-82. doi:10.1016/S0927-0248(97)00209-2
[7] D. Phase, R. J. Choudhary, V. Ganesan, V. R. Reddy, A. Gupta, N. Selvi, S. Kulkarni and S. Ogale, “Manipulation of Magnetic Nanostructures through Low Temperature Metal-Oxygen Chemistry: Co/CoO Exchange Based Nanodonuts and Co Nanotips,” Solid State Communications, Vol. 149, No. 7-8, 2009, pp. 277-280. doi:10.1016/j.ssc.2008.12.019
[8] I. G. Casella and M. R. Guascito, “Electrochemical Preparation of a Composite Gold-Cobalt Electrode and Its Electrocatalytic Activity in Al-kaline Medium,” Electrochimica Acta, Vol. 45, No. 7, 1999, pp. 1113-1120.
[9] P. S. Silinsky and M. S. Seehra, “Principal Magnetic Susceptibilities and Uniaxial Stress Experiments in CoO,” Physical Review B, Vol. 24, No. 1, 1981, pp. 419-423. doi:10.1103/PhysRevB.24.419
[10] R. Kannan and M. S. See-hra, “Percolation Effects and Magnetic Properties of the Randomly Diluted fcc System CoPMg1?pO,” Physical Review B, Vol. 35, No. 13, 1987, pp. 6847-6853.
[11] R. Drasovean and S. Condurache-Bota, “Structural Characterization and Optical Properties of Co3O4 and CoO Films,” Journal of Optoelectronics and Advanced Materials, Vol. 11, No. 12, 2009, pp. 2141-2144.
[12] T. Maruyama and S. Arai, “Electrochromic Properties of Cobalt Oxide Thin Films prepared by Chemical Vapour-Deposition,” Journal of the Electrochemical Society, Vol. 143, No. 4, 1996, pp. 1383-1386. doi:10.1149/1.1836646
[13] P. S. Patil, L. D. Kadam and C. D. Lokhande, “Preparation and Characterization of Sprayed Cobalt Oxide Thin Films,” Thin Solid Films, Vol. 272, No. 1, 1996, pp. 29-32. doi:10.1016/0040-6090(95)06907-0
[14] P. Nkeng, J. F. Koening, J. L. Gautier, P. Chartier and G. Poillesat, “Enhancement of Surface Areas of Co3O4 and NiCo2O4 Electroca-talysts Prepared by Spray Pyrolysis,” Journal of the Electro-chemical Society, Vol. 402, No. 1, 1996, pp. 81-89.
[15] L. C. Schumacher, I. B. Holzhueter, I. R. Hill and K. J. Dignam, “Semiconducting and Electrocatalytic Properties of Sputtered Cobalt Oxide Films,” Electrochimica Acta, Vol. 35, No. 6, 1990, pp. 975-984. doi:10.1016/0013-4686(90)90030-4
[16] Y. Ni, X. Ge, Z. Zhang, H. Liu, Z. Zho and Q. Ye, “A Simple Reduc-tion-Oxidation Route to Prepare Co3O4 Nanocrystals,” Materials Research Bulletin, Vol. 36, No. 13-14, 2001, pp. 2383-2387. doi:10.1016/S0025-5408(01)00739-5
[17] Y. Zhu, H. Li, Y. Koltypin and A. Gedanken, “Preparation of Nanosized Cobalt Hydroxides and Oxyhydroxide Assisted by Sonication,” Journal of Materials Chemistry, Vol. 12, No. 3, 2002, pp. 729-733. doi:10.1039/b107750c
[18] M. Guo, P. Diao and S. M. Cal, “Photoelectrochemical Properties of Highly Oriented ZnO Nanotube Array Films on ITO Substrates,” Chinese Chemical Letter, Vol. 15, No. 9, 2004, pp. 1113-1116.
[19] L. Vayssieres, “On the Design of Advanced Metal Oxide Nanomaterials,” International Journal of Nanotechnology, Vol. 1, No. 1-2, 2004, pp. 1-41.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.