Share This Article:

Propagation of Modified Bessel-Gaussian Beams in a Misaligned Optical System

Abstract Full-Text HTML Download Download as PDF (Size:1049KB) PP. 318-325
DOI: 10.4236/opj.2012.24039    4,342 Downloads   6,952 Views   Citations

ABSTRACT

The formalism of generalized diffraction integral for paraxial misaligned optical systems is used to investigate the propagation of the Modified Bessel-Gaussian (MBG) beam through a misaligned thin lens. The properties of the propagation of MBG beam traveling through this misaligned ABCD optical system are discussed. A special case of misaligned circular thin lens is illustrated analytically and numerically. The shape of the MBG beam at the exit of the misaligned optical system is unchanged; however the center of the beam is shifted from the propagation axis in correlated manner with the design parameters of the optical system.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

L. Ez-Zariy, H. Nebdi, E. Bentefour and A. Belafhal, "Propagation of Modified Bessel-Gaussian Beams in a Misaligned Optical System," Optics and Photonics Journal, Vol. 2 No. 4, 2012, pp. 318-325. doi: 10.4236/opj.2012.24039.

References

[1] J. Yin, Y. Zhu, W. Jhe and Y. Wang, “Atom Guiding and Cooling in a Dark Hollow Laser Beam,” Physical Review A, Vol. 58, No. 1, 1998, pp. 509-513. doi:/10.1103/PhysRevA.58.509
[2] J. P. Yin, W. J. Gao, H. F. Wang, Q. Long and H. Z. Wang, “Generations of Dark Hollow Beams and Their Applications in Laser Cooling of Atoms and All Optical-Type Bose-Einstein Condensation,” Chinese Physics, Vol. 11, No. 11, 2002, pp. 1157-1169. doi:/10.1088/1009-1963/11/11/312
[3] H. T. Eyyuboglu and F. Hardala?, “Propagation of Modified Bessel-Gaussian Beams in Turbulence,” Optics & Laser Technology, Vol. 40, No. 2, 2008, pp. 343-351. doi:/10.1016/j.optlastec.2007.06.006
[4] H. T. Eyyuboglu, Y. Baykal, E. Sermutlu, O. Korotkova and Y. Cai, “Scintillation Index of Modified BesselGaussian Beams Propagating in Turbulent Media,” Journal of the Optical Society of America, Vol. 26, No. 2, 2009, pp. 387-394. doi:/10.1364/JOSAA.26.000387
[5] S. A. Ponomarenko, “A Class of Partially Coherent Beams Carrying Optical Vortices,” Journal of the Optical Society of America, Vol. 18, No. 1, 2001, pp. 150-156. doi:/10.1364/JOSAA.18.000150
[6] L. Wang, X. Wang and B. Lü, “Propagation Properties of Partially Coherent Modified Bessel–Gauss Beams,” Optik, Vol. 116, No. 2, 2005, pp. 65-70. doi:/10.1016/j.ijleo.2004.11.006
[7] Z. H. Gao and B. D. Lü, “Partially Coherent Nonparaxial Modified Bessel–Gauss Beams,” Chinese Physics, Vol. 15, No. 2, 2006, pp. 334-339. doi:/10.1088/1009-1963/15/2/018
[8] L. Wang, M. Li, X. Wang and Z. Zhang, “Focal Switching of Partially Coherent Modified Bessel-Gaussian Beams Passing through an Astigmatic Lens with Circular Aperture,” Optics & Laser Technology, Vol. 41, No. 5, 2009, pp. 586-589. doi:/10.1016/j.optlastec.2008.10.008
[9] K. C. Zhu, X. Y. Li, X. J. Zheng and H. Q. Tang, “Nonparaxial Propagation of Linearly Polarized Modified Bessel-Gaussian Beams and Phase Singularities of the Electromagnetic Field Components,” Applied Physics B: Lasers and Optics, Vol. 98, No. 2-3, 2010, pp. 567-572. doi:/10.1007/s00340-009-3807-2
[10] C. Ding, L. Pan and B. Lü, “Changes in the State of Polarization of Apertured Stochastic Electromagnetic Modified Bessel-Gauss Beams in Free-Space Propagation,” Applied Physics B: Lasers and Optics, Vol. 99, No. 1-2, 2010, pp. 307-315. doi:/10.1007/s00340-009-3818-z
[11] A. A. A. Ebrahim, L. Ez-zariy and A. Belafhal, “Propagation of Modified Bessel-Gaussian Beams through an Annular Apertured Paraxial ABCD Optical System,” Physical and Chemical News, Vol. 61, 2011, pp. 52-58.
[12] G. Ding and B. Lu, “Decentered Twisted Gaussian SchellModel Beams and Their Propagation through a Misaligned First-Order Optical System,” Optical and Quantum Electronics, Vol. 35, No. 2, 2003, pp. 91-100. doi:/10.1023/A:1022478608090
[13] M. Shen, S. Wang and D. Zhao, “Propagation of Flattened Gaussian Beams Passing through a Misaligned Optical System with Finite Aperture,” Optik, Vol. 115, No. 5, 2004, pp. 193-196. doi:/10.1078/0030-4026-00346
[14] J. Gu, D. Zhao and Z. Mei, “The Relative Phase Shift of Off-Axial Gaussian Beams through an Apertured and Misaligned Optical System,” Optik, Vol. 115, No. 4, 2004, pp. 187-191. doi:/10.1016/S0030-4026(08)70009-3
[15] Y. Cai and L. Zhang, “Propagation of a Hollow Gaussian Beam through a Paraxial Misaligned Optical System,” Optics Communications, Vol. 265, No. 2, 2006, pp. 607615. doi:/10.1016/j.optcom.2006.03.070
[16] Y. Cai and X. Lu, “Propagation of Bessel and Bessel-Gaussian Beams through an Unapertured or apertured Misaligned Paraxial Optical Systems,” Optics Communications, Vol. 274, No. 1, 2007, pp. 1-7. doi:/10.1016/j.optcom.2007.01.058
[17] C. Zhao, L. Wang, X. Lu and H. Chen, “Propagation of High-Order Bessel-Gaussian Beam through a Misaligned First-Order Optical System,” Optics & Laser Technology, Vol. 39, No. 6, 2007, pp. 1199-1203. doi:/10.1016/j.optlastec.2006.08.015
[18] H. T. Eyyuboglu, “Propagation Aspects of MathieuGaussian Beams in Turbulence,” Applied Physics B: Lasers and Optics, Vol. 91, No. 3-4, 2008, pp. 629-637. doi:/10.1007/s00340-008-3020-8
[19] A. Chafiq, Z. Hricha and A. Belafhal, “Propagation of Generalized Mathieu-Gauss Beams through Paraxial Misaligned Optical Systems,” Optics Communications, Vol. 282, No. 19, 2009, pp. 3934-3939. doi:/10.1016/j.optcom.2009.03.062
[20] A. Belafhal, M. Yaalou and S. Hennani, “Propagation of Bessel-Modulated Gaussian Beams through a Misaligned First-Order Optical System,” Physical and Chemical News, Vol. 61, 2011, pp. 34-43.
[21] A. Belafhal and S. Hennani, “A Note on Some Integrals Used in Laser Field Involving the Product of Bessel Functions,” Physical and Chemical News, Vol. 61, 2011, pp. 59-62.
[22] S. Wang and L. Ronchi, “III Principles and Design of Optical Arrays,” Progress in Optics, Vol. 25, 1988, pp. 279-348.
[23] I. S. Gradshteyn and I. M. Ryzhik, “Tables of Integrals, Series, and Products,” 5th Edition, Academic Press, New York, 1994.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.