An Efficient Reaction Process for the Synthesis of Oxazinanes, and Oxazolidines in the Presence of Air


After purging air through the mixture of aldehydes and amino alcohols and microwaved the reaction mixture at 50°C for minutes gave the corresponding oxazinanes, and oxazolidines in excellent yields.

Share and Cite:

M. Al-Masum, B. Lott and N. Ghazialsharif, "An Efficient Reaction Process for the Synthesis of Oxazinanes, and Oxazolidines in the Presence of Air," International Journal of Organic Chemistry, Vol. 2 No. 4, 2012, pp. 362-365. doi: 10.4236/ijoc.2012.24049.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Liu, W. Feng, C. W. Kee, D. Leow, W.-T. Loh and C.-H. Tan, “Br?nsted Base-Catalyzed Tandem Isomerization-Michael Reactions of Alkynes: Synthesis of Oxacycles and Azacycles,” Advanced Synthesis & Catalysis, Vol. 352, No. 18, 2010, pp. 3373-3379. doi:10.1002/adsc.201000618
[2] T. Mino, S. Hata, K. Ohtaka, M. Sakamoto and T. Fujita, “Novel Chiral Phosphine-Oxazinane Ligands in Palladium-Catalyzed Asymmetric Allylic Alkylation,” Tetrahedron Letters, Vol. 42, No. 29, 2001, pp. 4837-4839. doi:10.1016/S0040-4039(01)00860-7
[3] S. Gandhi, A. Bisai, B. A. Bhanu Prasad and V. K. Singh, “Studies on the Reaction of Aziridines with Nitriles and Carbonyls:? Synthesis of Imidazolines and Oxazolidines,” The Journal of Organic Chemistry, Vol. 72, No. 6, 2007, pp. 2133-2142. doi:10.1021/jo062564c
[4] A. Joosten, E. Lambert, J.-L. Vasse and J. Szymoniak, “Diastereoselective Access to trans-2-Substituted Cyclopentylamines,” Organic Letters, Vol. 12, No. 22, 2010, pp. 5128-5131. doi:10.1021/ol102038x
[5] N. Srivastava, S. K. Dasgupta and B. K. Banik, “A Remarkable Bismuth Nitrate-Catalyzed Protection of Carbonyl Compounds,” Tetrahedron Letters, Vol. 44, No. 6, 2003, pp. 1191-1193. doi:10.1016/S0040-4039(02)02821-6
[6] F. Gosselin, A. Roy, P. D. O’Shea, C. Chen and R. P. Volante, “Oxazolidine Ring Opening and Isomerization to (E)-Imines. Asymmetric Synthesis of Aryl-α-fluoroalkyl Amino Alcohols,” Organic Letters, Vol. 6, No. 4, 2004, pp. 641-644. doi:10.1021/ol036486g
[7] C. Hajji, E. Z. Garcia and J. Sepulveda-Arques, “Synthesis of 1,3-Oxazolidines and 1,3-Dioxalanes by Reaction of (2R, 3R)-3-Methylamino-3-phenyl-1,2-propanediol with Electrophiles,” Synthetic Communications, Vol. 33, No. 24, 2010, pp. 4347-4354. doi:10.1081/SCC-120026865
[8] G. Choi and T. Tatewaki, “Jpn Kokai Tokyo Koho,” Japanese Patent No. Jp. 2010024286, 2010.
[9] E. R. Kennedy and R. H. Hill Jr., “Determination of Formaldehyde in Air as an Oxazolidine Derivative by Capillary Gas Chromatography,” Analytical Chemistry, Vol. 54, No. 11, 1982, pp. 1739-1742. doi:10.1021/ac00248a020
[10] P. A. Smith, C. R. Bowerbank, M. L. Lee, M. Solberg, D. B. Drown, W. Alexander and K. R. Still, “Airborne Aldehydes from Heating Rosin Core Solder and Liquid Rosin Flux to Soldering Temperatures,” AIHAJ (A Journal for the Science of Occupational and Environmental Health and Safety), Vol. 61, 2000, pp. 95-101.
[11] D. R. Larkin, “The Role of Catalysts in the Air Oxidation of Aliphatic Aldehydes,” The Journal of Organic Chemistry, Vol. 55, No. 5, 1990, pp. 1563-1568. doi:10.1021/jo00292a035

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.