Stress-Induced Dispersal of Staphylococcus epidermidis Biofilm Is Due to Compositional Changes in Its Biofilm Matrix

Abstract

Biofilm formation is an important virulence factor of Staphylococcus epidermidis. However, little is known about the mechanisms of staphylococcal biofilm dispersal. In the present study, we investigated biofilm dispersal of the model biofilm-forming strain S. epidermidis RP62A under oligotrophic stress conditions. We found that oligotrophic stress led to rapid dispersal of pre-formed biofilms and concomitant changes in the composition of the extracellular matrix, including a decrease in poly-N-acetylglucosamine polysaccharide and an increase in proteins. Our results suggest that modifications in biofilm integrity caused by compositional changes in the biofilm matrix can induce biofilm dispersal.

Share and Cite:

C. Coulon, I. Sadovskaya, P. Lencel, S. Jabbouri, J. B. Kaplan and S. Flahaut, "Stress-Induced Dispersal of Staphylococcus epidermidis Biofilm Is Due to Compositional Changes in Its Biofilm Matrix," Advances in Microbiology, Vol. 2 No. 4, 2012, pp. 518-522. doi: 10.4236/aim.2012.24066.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. Gotz, “Staphylococcus and Biofilms,” Molecular Microbiology, Vol. 43, 2002, pp. 1367-1378. doi:10.1046/j.1365-2958.2002.02827.x
[2] D. Mack, A. P. Davies, L. G. Harris, H. Rohde, M. A. Horstkotte and J. K. M. Knobloch, “Microbial Interactions in Staphylococcus epidermidis Biofilms,” Analytical and Bioanalytical Chemistry, Vol. 387, No. 2, 2007, pp. 399-408. doi:10.1007/s00216-006-0745-2
[3] N. Cerca, S. Martins, G. B. Pier, R. Oliveira and J. Azeredoa, “The Relationship between Inhibition of Bacterial Adhesion to a Solid Surface by Sub-MICs of Antibiotics and Subsequent Development of a Biofilm,” Research in Microbiology, Vol. 156, 2005, pp. 650-655. doi:10.1016/j.resmic.2005.02.004
[4] I. Sadovskaya, P. Chaignon, G. Kogan, A. Chokr, E. Vinogradov and S. Jabbouri, “Carbohydrate-Containing Components of Biofilms Produced in Vitro by Some Staphylococcal Strains Related to Orthopaedic Prosthesis Infections,” FEMS Immunology and Medical Microbiology, Vol. 47, 2006, pp. 75-82. doi:10.1111/j.1574-695X.2006.00068.x
[5] I. Sadovskaya, E. Vinogradov, S. Flahaut, G. Kogan and S. Jabbouri, “Extracellular Carbohydrate-Containing Polymers of a Model Biofilm-Producing Strain, Staphylococcus epidermidis RP62A,” Infection and Immunity, Vol. 73, No. 5, 2005, pp. 3007-3017. doi:10.1128/IAI.73.5.3007-3017.2005
[6] D. Mack, W. Fischer, A. Krokotsch, K. Leopold, R. Hartmann, H. Egge and R. Laufs, “The Intercellular Adhesin Involved in Biofilm Accumulation of Staphylococcus epidermidis Is a Linear Beta-1,6-Linked Glucosaminoglycan: Purification and Structural Analysis,” Journal of Bacteriology, Vol. 178, No. 1, 1996, pp. 175-183.
[7] M. Otto, “Staphylococcal Biofilms,” Current Topics in Microbiology and Immunology, Vol. 322, 2008, pp. 207-228.
[8] R. Wang, B. A. Khan, G. Y. Cheung, T. H. Bach, M. Jameson-Lee, K. Kong, S. Y. Queck and M. Otto, “Staphylococcus epidermidis Surfactant Peptides Promote Biofilm Maturation and Dissemination of Biofilm-Associated Infection in Mice,” Journal of Clinical Investigation, Vol. 121, No. 1, 2011, pp. 238-248. doi:10.1172/JCI 42520.
[9] G. Kogan, I. Sadovskaya, P. Chaignon, A. Chokr and S. Jabbouri, “Biofilms of Clinical Strains of Staphylococcus that Do Not Contain Polysaccharide Intercellular Adhesin,” FEMS Microbiology Letters, Vol. 255, 2006, pp. 11-16. doi:10.1111/j.1574-6968.2005.00043.x
[10] H. Rohde, C. Burdelski, K. Bartscht, M. Hussain, F. Buck, M. A. Horstkotte, J. K.-M. Knobloch, C. Heilmann, M. Herrmann and D. Mack, “Induction of Staphylococcus epidermidis Biofilm Formation via Proteolytic Processing of the Accumulation-Associated Protein by Staphylococcal and Host Proteases,” Molecular Microbiology, Vol. 55, 2005, pp. 1883-1895. doi:10.1111/j.1365-2958.2005.04515.x
[11] J. B. Kaplan, “Biofilm Dispersal: Mechanisms, Clinical Implications, and Potential Therapeutic Uses,” Journal of Dental Research, Vol. 89, No. 3, 2010, pp. 205-218. doi:10.1177/0022034509359403
[12] S. M. Hunt, E. M. Werner, B. Huang, M. A. Hamilton and P. S. Stewart, “Hypothesis for the Role of Nutrient Starvation in Biofilm Detachment,” Applied and Environmental Microbiology, Vol. 70, No. 12, 2004, pp. 7418-7425. doi:10.1128/AEM.70.12.7418-7425.2004
[13] P. J. Delaquis, D. E. Caldwell, J. R. Lawrence and A. R. McCurdy, “Detachment of Pseudomonas fluorescens from Biofilms on Glass Surfaces in Response to Nutrient Stress,” Microbial Ecology, Vol. 18, 1989, pp. 199-210. doi:10.1007/BF02075808
[14] M. Gjermansen, M. Nilsson, L. Yang and T. Tolker-Nielsen, “Characterization of Starvation-Induced Dispersion in Pseudomonas putida Biofilms: Genetic Elements and Molecular Mechanisms,” Molecular Microbiology, Vol. 75, 2010, pp. 815-826. doi:10.1111/j.1365-2958.2009.06793.x
[15] L. K. Sawyer and S. W. Hermanowicz, “Detachment of Biofilm Bacteria Due to Variations in Nutrient Supply,” Water Science and Technology, Vol. 37, No.4, 1998, pp. 211-214. doi:10.1016/S0273-1223(98)00108-5
[16] B. R. Boles and A. R. Horswill, “Agr-Mediated Dispersal of Staphylococcus aureus Biofilms,” PLoS Pathogens, Vol. 4, 2008, Article ID: e1000052. doi:10.1371/journal.ppat.1000052
[17] S. Jager, D. Mack, H. Rohde, M. A. Horstkotte and J. K.-M. Knobloch, “Disintegration of Staphylococcus epidermidis Biofilms under Glucose-Limiting Conditions Depends on the Activity of the Alternative Sigma Factor Sigma B,” Applied and Environmental Microbiology, Vol. 71, No. 9, 2005, pp. 5577-5581. doi:10.1128/AEM.71.9.5577-5581.2005
[18] G. D. Christensen, W. A. Simpson, J. J. Younger, L. M. Baddour, F. F. Barrett, D. M. Melton and E. H. Beachey, “Adherence of Coagulase-Negative Staphylococci to Plastic Tissue Culture Plates: A Quantitative Model for the Adherence of Staphylococci to Medical Devices,” Journal of Clinical Microbiology, Vol. 22, No. 6, 1985, pp. 996-1006.
[19] J. B. Kaplan, C. Ragunath, K. Velliyagounder, D. H. Fine and N. Ramasubbu, “Enzymatic Detachment of Staphylococcus epidermidis Biofilms,” Antimicrobial Agents and Chemotherapy, Vol. 48, No. 7, 2004, pp. 2633-2636. doi:10.1128/AAC.48.7.2633-2636.2004
[20] E. Enghofer and H. Kress, “An Evaluation of the Morgan- Elson Assay for 2-Amino-2-Deoxy Sugars,” Carbohydrates Research, Vol. 76, 1979, pp. 233-238. doi:10.1016/0008-6215(79)80022-1
[21] S. Jager, B. Jonas, D. Pfanzelt, M. A. Horstkotte, H. Rohde, D. Mack and J. K. Knobloch, “Regulation of Biofilm Formation by Sigma B Is a Common Mechanism in Staphylococcus epidermidis and Is Not Mediated by Transcriptional Regulation of Sar A,” The International Journal of Artificial Organs, Vol. 32, No. 9, 2009, pp. 584-591.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.