Solar Thermal Systems Performances versus Flat Plate Solar Collectors Connected in Series

DOI: 10.4236/eng.2012.412112   PDF   HTML     8,102 Downloads   13,872 Views   Citations


This paper shows the modeling of a solar collective heating system in order to predict the system performances. Two systems are proposed: 1) the first, Solar Direct Hot Water, which is composed of flat plate collectors and thermal storage tank, 2) the second, a Solar Indirect Hot Water in which we added an external heat exchanger of constant effectiveness to the first system. The mass flow rate by a collector is fixed to 0.04 Kg·s–1 and the total number of collectors is adjusted to 60. For the first system, the maximum average water temperature within the tank in a typical day in summer and annual performances are calculated by varying the number of collectors connected in series. For the second, this paper shows the detailed analysis of water temperature within the storage and annual performances by varying the mass flow rate on the cold side of the heat exchanger and the number of collectors in series on the hot side. It is shown that the stratification within the storage is strongly influenced by mass flow rate and the connections between collectors. It is also demonstrated that the number of collectors that can be connected in series is limited. The optimization of the mass flow rate on cold side of the heat exchanger is seen to be an important factor for the energy saving.

Share and Cite:

K. Zelzouli, A. Guizani, R. Sebai and C. Kerkeni, "Solar Thermal Systems Performances versus Flat Plate Solar Collectors Connected in Series," Engineering, Vol. 4 No. 12, 2012, pp. 881-893. doi: 10.4236/eng.2012.412112.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Z. Lavan and J. Thompson, “Experimental Study of Thermally Stratified Hot Water Storage Tanks,” Solar Energy, Vol. 19, No. 5, 1977, pp. 519-524. doi:10.1016/0038-092X(77)90108-6
[2] R. J. Wood, S. M. Al-Muslah, P. W. O’Callaghan and S. D. Probert, “Thermally Stratified Hot Water Storage Systems,” Applied Energy, Vol. 9, No. 3, 1981, pp. 231242. doi:10.1016/0306-2619(81)90035-0
[3] M. Y. Haller, C. A. Cruickshank, W. Streicher, S. J. Harrison, E. Andersen and S. Furbo, “Methods to Determine Stratification Efficiency of Thermal Energy Storage Processes-Review and Theoretical Comparison,” Solar Energy, Vol. 83, No. 10, 2009, pp. 1847-1860. doi:10.1016/j.solener.2009.06.019
[4] M. K. Sharp and R. I. Loehrke, “Stratified Thermal Storage in Residential Solar Energy Applications,” Energy, Vol. 3, No. 2, 1979, pp. 106-113. doi:10.2514/3.62417
[5] M. D. Wuestling, S. A. Klein and J. A. Duffie, “Promising Control Alternatives for Solar Water Heating Systems,” Journal of Solar Energy Engineering, Vol. 107, No. 3, 1985, pp. 215-221. doi:10.1115/1.3267681
[6] A. H. Fanney and S. A. Klein, “Thermal Performance Comparisons for Solar Hot Water Systems Subjected to Various Collector and Heat Exchanger Flow Rates,” Solar Energy, Vol. 40, No. 1, 1988, pp. 1-11. doi:10.1016/0038-092X(88)90065-5
[7] K. G. T. Hollands and M. F. Lightstone, “A Review of Low-Flow Stratified-Tank Solar Water Heating Systems,” Solar Energy, Vol. 43, No. 2, 1989, pp. 97-105. doi:10.1016/0038-092X(89)90151-5
[8] E. M. Kleinbach, W. A. Beckman and S. A. Klein, “Performance Study of One-Dimensional Models for Stratified Thermal Storage Tanks,” Solar Energy, Vol. 50, No. 2, 1993, pp. 155-166. doi:10.1016/0038-092X(93)90087-5
[9] C. Cristofari, G. Notton, P. Poggi and A. Louche, “Influence of the Flow Rate and the Tank Stratification Degree on the Performances of a Solar Flat-Plate Collector,” International Journal of Thermal Sciences, Vol. 42, No. 5, 2003, pp. 455-469. doi:10.1016/S1290-0729(02)00046-7
[10] P. C. Eamesi and B. Norton, “The Effect of Tank Geometry on Thermally Stratified Sensible Heat Storage Subject to Low Reynolds Number Flows,” International Journal of Heat and Mass Transfer, Vol. 41, No. 14, 1998, pp. 2131-2142.
[11] J. E .B. Nelson, A. R. Balakrishnan and S. Srinivasa Murthy, “Experiments on Stratified Chilled-Water Tanks,” International Journal of Refrigeration, Vol. 22, No. 3, 1999, pp. 216-234. doi:10.1016/S0140-7007(98)00055-3
[12] A. Hobbi and K. Siddiqui, “Optimal Design of a Forced Circulation Solar Water Heating System for a Residential Unit in Cold Climate Using TRNSYS,” Solar Energy, Vol. 83, No. 5, 2009, pp. 700-714. doi:10.1016/j.solener.2008.10.018
[13] M. Lundh, K. Zass, C. Wilhelms, K. Vajen and U. Jordan, “Influence of Store Dimensions and Auxiliary Volume Configuration on the Performance of Medium-Sized Solar Combisystems,” Solar Energy, Vol. 84, No. 7, 2010, pp. 1095-1102. doi:10.1016/j.solener.2010.03.004
[14] A. M. Shariah and A. Ecevit, “Effect of Hot Water Load Temperature on the Performance of a Thermosyphon Solar Water Heater with Auxiliary Electric Heater,” Energy Conversion and Management, Vol. 36, No. 5, 1995, pp. 289-296. doi:10.1016/0196-8904(95)98894-S
[15] M. Boji?, S. Kalogirou and K. Petronijevic′, “Simulation of a Solar Domestic Water Heating System Using a Time Marching Model,” Renewable Energy, Vol. 27, No. 3, 2002, pp. 441-452. doi:10.1016/S0960-1481(01)00098-2
[16] M. C. Rodríguez-Hidalgo, “Domestic Hot Water Consumption vs solar Thermal Energy Storage: The Optimum Size of the Storage Tank,” Applied Energy, Vol. 97, 2012, pp. 897-906. doi:10.1016/j.apenergy.2011.12.088
[17] Y. D. Kim, K. Thu, H. K. Bhatia, C. S. Charanjit Singh Bhatia and Ng. Kim Choon, “Thermal Analysis and Performance Optimization of a Solar Hot Water Plant with Economic Evaluation,” Solar Energy, Vol. 86, No. 5, 2012, pp.1378-1395. doi:10.1016/j.solener.2012.01.030
[18] E. Papanicolaou and V. Belessiotis, “Transient Development of Flow and Temperature Fields in an Underground Thermal Storage Tank under Various Charging Modes,” Solar Energy, Vol. 83, No. 8, 2009, pp. 1161-1176. doi:10.1016/j.solener.2009.01.017
[19] J. A. Quijera, M. G. Alriols and J. Labidi, “Integration of a Solar Thermal System in a Dairy Process,” Renewable Energy, Vol. 36, No. 6, 2011, pp. 1843-1853. doi:10.1016/j.renene.2010.11.029
[20] C. Armenta, P. Vorobieff and A. Mammoli, “Summer OffPeak Performance Enhancement for Rows of Fixed Solar Thermal Collectors Using Flat Reflective Surfaces,” Solar Energy, Vol. 85, No. 9, 2011, pp. 2041-2052. doi:10.1016/j.solener.2011.05.016
[21] I. Luminosu and L. Fara, “Determination of the Optimal Operation Mode of a Flat Solar Collector by Exergetic Analysis and Numerical Simulation,” Energy, Vol. 30, No. 5, 2005, pp. 731-747. doi:10.1016/
[22] M. J. Atkin, M. R. W. Walmsley and A. S. Morrison, “Integration of Solar Thermal for Improved Energy Efficiency in Low-Temperature-Pinch,” Industrial Processes Energy, Vol. 35, No. 5, 2010, pp. 1867-1873. doi:10.1016/
[23] H. P. Garg, “Design and Performance of a Large-Size Solar Water Heater,” Solar Energy, Vol. 14, 1973, pp. 303-312. doi:10.1016/0038-092X(73)90097-2
[24] G. L. Morrison, “Solar Collectors,” In: J. Gordon, Ed., Solar Energy—The State of the Art-ISES Position Papers, James and James Science Publishers, London, 2001, pp. 145-221.
[25] S. A. Kalogirou, “Solar Energy Engineering: Processes and Systems,” Elsevier, London, 2009.
[26] S. Dubey, “Tiwari Analysis of PV/T Flat Plate Water Collectors Connected in series,” Solar Energy, Vol. 83, No. 9, 2009, pp. 1485-1498. doi:10.1016/j.solener.2009.04.002
[27] A. M. Al-Ibrahim, W. A. Beckman, S. A. Klein and J. W. Mitchell, “Design Procedure for Selecting an Optimum Photovoltaic Pumping System in a Solar Domestic Hot Water System,” Solar Energy, Vol. 64, No. 4-6, 1998, pp. 227-239. doi:10.1016/S0038-092X(98)00105-4
[28] N. Cardinale, F. Piccininni and P. Stefanizzi, “Economic Optimization of Low-Flow Solar Domestic Hot Water Plants,” Renewable Energy, Vol. 28, No. 12, 2003, pp. 1899-1914. doi:10.1016/S0960-1481(03)00070-3
[29] Y. M. Han, R. Z. Wang and Y. J. Dai, “Thermal Stratification within the Water Tank,” Renewable and Sustainable Energy Reviews, Vol. 13, No. 5, 2009, pp. 10141026. doi:10.1016/j.rser.2008.03.001
[30] J. A. Duffie and W. A. Beckman, “Solar Engineering of Thermal Processes,” 2nd Edition, Wiley Interscience, New York, 1991.
[31] J. F. Kreider and F. Kreith, “Solar Heating and Cooling: Engineering, Practical Design, and Economics,” Hemisphere, New York, 1977.
[32] M. Balghouthi, M. H. Chahbani and A. Guizani, “Investigation of a Solar Cooling Installation in Tunisia,” Applied Energy, Vol. 98, 2012, pp. 138-148. doi:10.1016/j.apenergy.2012.03.017
[33] M. Hazami, S. Kooli, M. Lazaar, A. Farhat and A. Belghith, “Energetic and Exergetic Performances of an Economical and Available Integrated Solar Storage Collector Based on Concrete Matrix,” Energy Conversion and Management, Vol. 51, No. 6, 2010, pp. 1210-1218.
[34] NASA SSE.
[35] J. A. Duffie and W. A. Beckman, “Solar Engineering of Thermal Processes,” 3rd Edition, John Wiley & Sons, New York, 2006.
[36] T. M. Klucher, “Evaluation of Models to Predict Insolation on Tilted Surfaces,” Solar Energy, Vol. 23, No. 2, 1979, pp. 111-114. doi:10.1016/0038-092X(79)90110-5
[37] J. E. Hay and J. A. Davies, “Calculation of the Solar Radiation Incident on an Inclined Surface,” Proceedings of First Canadian Solar Radiation Data Workshop, Toronto, 1980.
[38] D. T. Reindl, W. A. Beckman and J. A. Duffie, “Evaluation of Hourly Tilted Surface Radiation Models,” Solar Energy, Vol. 45, No. 1, 1990, pp. 9-17. doi:10.1016/0038-092X(90)90061-G
[39] A. M. Noorian, I. Moradi and G. A. Kamali, “Evaluation of 12 Models to Estimate Hourly Diffuse Irradiation on Inclined Surfaces,” Renewable Energy, Vol. 33, No. 6, 2008, pp. 1406-1412. doi:10.1016/j.renene.2007.06.027
[40] E. G. Evseev and A. I. Kudish, “The Assessment of Different Models to Predict the Global Solar Radiation on a Surface Tilted to the South,” Solar Energy, Vol. 83, No. 3, 2009, pp. 377-388. doi:10.1016/j.solener.2008.08.010
[41] D. A. Chwieduk, “Recommendation on Modelling of Solar Energy Incident on a Building Envelope,” Renewable Energy, Vol. 34, No. 3, 2009, pp. 736-741. doi:10.1016/j.renene.2008.04.005
[42] A. Padovan and D. Del Col, “Measurement and Modeling of Solar Irradiance Components on Horizontal and Tilted Planes,” Solar Energy, Vol. 84, No. 12, 2010, pp. 20682084. doi:10.1016/j.solener.2010.09.009
[43] S. A. Klein, J. A. Duf?e, J. C. Mitchell, J. P. Kummer, W. A. Beckmann, N. A. Duf?e, et al., “TRNSYS16 a Transient Simulation Program,” Solar Energy Laboratory, University of Wisconsin-Madison, Madison, 2007, pp. 357359.
[44] H. C. Hottel and B. B. Woertz, “The Performance of Flat Plate Solar-Heat Collectors,” Transactions of the ASME, Vol. 64, 1942, pp. 64-91.
[45] S. A. Klein, “Calculation of Flat-Plate Collector Loss Coefficients,” Solar Energy, Vol. 17, No. 1, 1975, pp. 79-80. doi:10.1016/0038-092X(75)90020-1
[46] S. A. Klein, J. A. Duf?e, J. C. Mitchell, J. P. Kummer, W. A. Beckmann, N. A. Duf?e, et al., “TRNSYS16 a Transient Simulation Program,” Solar Energy Laboratory, University of Wisconsin-Madison, Madison, 2007, pp. 117118.
[47] S. M. Baek, J. H. Namb, H. Hong and C. J. Kim, “Effect of Brine Flow Rate on the Performance of a Spiral-Jacketed Thermal Storage Tank Used for SDHW Systems: A Computational Fluid Dynamics Study,” Applied Thermal Engineering, Vol. 31, No. 14-15, 2011, pp. 2716-2725. doi:10.1016/j.applthermaleng.2011.04.043
[48] J. E. Braun, S. A. Klein and J. W. Mitchell, “Seasonal Storage of Energy in Solar Heating,” Solar Energy, Vol. 26, No. 5, 1981, pp. 403-411. doi:10.1016/0038-092X(81)90219-X
[49] A. Mawire, M. McPherson and R. R. J. Van Den Heetkamp, “Thermal Performance of a Small Oil-in-Glass Tube Thermal Energy Storage System during Charging,” Energy, Vol. 34, No. 7, 2009, pp. 838-849. doi:10.1016/
[50] J. Ji, J. Han, T. T. Chow, H. Yi, J. Lu, W. He, et al., “Effect of Fluid Flow and Packing Factor on Energy Performance of a Wall-Mounted Hybrid Photovoltaic/WaterHeating Collector System,” Energy and Buildings, Vol. 38, No. 12, 2006, pp. 1380-1387.
[51] M. Dayan, “High Performance in Low-Flow Domestic Hot Water Systems,” M.S. Thesis, University of Wisconsin-Madison, Madison, 1997.
[52] K. G. T. Hollands and A. P. Brunger, “Optimum Flow Rates in Solar Water Heating Systems with a Counterflow Exchanger,” Solar Energy, Vol. 48, No. 1, 1992, pp. 15-19. doi:10.1016/0038-092X(92)90172-7
[53] H. Wang and C. Qi, “Performance Study of Underground Thermal Storage in a Solar-Ground Coupled Heat Pump System for Residential Buildings,” Energy and Buildings, Vol. 40, No. 7, 2008, pp. 1278-1286. doi:10.1016/j.enbuild.2007.11.009
[54] A. M. Shariah and G. O. G. L?f, “Effects of Auxiliary Heater on Annual Performance of Thermosyphon Solar Water Heater Simulated under Variable Operating Conditions,” Solar Energy, Vol. 60, No. 2, 1997, pp. 119-126. doi:10.1016/S0038-092X(96)00158-2

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.