Scientific Research

An Academic Publisher

**Positive-Definite Operator-Valued Kernels and Integral Representations** ()

A truncated trigonometric, operator-valued moment problem in section 3 of this note is solved. Let be a finite sequence of bounded operators, with arbitrary, acting on a finite dimensional Hilbert space H. A necessary and sufficient condition on the positivity of an operator kernel for the existence of an atomic, positive, operator-valued measure , with the property that for every with , the moment of coincides with the term of the sequence, is given. The connection between some positive definite operator-valued kernels and the Riesz-Herglotz integral representation of the analytic on the unit disc, operator-valued functions with positive real part in the class of operators in Section 4 of the note is studied.

Share and Cite:

L. Lemnete-Ninulescu, "Positive-Definite Operator-Valued Kernels and Integral Representations,"

*Applied Mathematics*, Vol. 3 No. 12, 2012, pp. 1990-1999. doi: 10.4236/am.2012.312274.Conflicts of Interest

The authors declare no conflicts of interest.

[1] | C. Carathéodory, “über den Variabilitatsbereich der Fourierschen Konstanten von Positiven Harmonischen Funktionen,” Rendiconti del Circolo Matematico di Palermo, Vol. 32, No. 1, 1911, pp. 193-207. doi:10.1007/BF03014795 |

[2] | G. Herglotz, “über Potenzreihen mit Positivem, Reelem Teil im Einheitskreis,” Leipziger Berichte, Mathematics, Physics, Vol. 63, 1911, pp. 501-511. |

[3] | C. Carathéodory und L. Fejér, “über den Zusammenhang der Extreme von Harmonischen Funktionen mit ihren Koeffizienten und über den Picard-Landauschen Satz,” Rendiconti del Circolo Matematico di Palermo, Vol. 32, No. 1, 1911, pp. 218-239. doi:10.1007/BF03014796 |

[4] | T. Ando, “Truncated Moment Problems for Operators,” Acta Mathematica, Vol. 31, 1970, pp. 319-334. |

[5] | L. Lemnete-Ninulescu, “Truncated Trigonometric and Hausdorff Moment Problems for Operators,” Proceedings of the 23th International Operator Conference, Timisoara, 29 June-4 July 2010, pp. 51-61. |

[6] | M. Bakonyi and V. Lopushanskaya, “Moment Problems for Real Measures on the Unit Circle,” Operator Theory Advances and Applications, Vol. 198, 2009, pp.49-60. |

[7] | F. J. Narcowich, “R-Operators II., on the Approximation of Certain Operator-Valued Analytic Functions and the Hermitian Moment Problem,” Indiana University Mathematics Journal, Vol. 26, No. 3, 1977, pp. 483-513. doi:10.1512/iumj.1977.26.26038 |

[8] | M. Putinar and F. H. Vasilescu, “Solving Moment Problems by Dimensional Extension,” Annals of Mathematics, Vol. 148, No. 3, 1999, pp. 1087-1107. |

[9] | F. H. Vasilescu, “Spectral Measures and Moment Problems,” In: Spectral Theory and Its Applications, Theta, Bucharest, 2003, pp. 173-215. |

[10] | L. Lemnete-Ninulescu, “Positive-Definite Operator-Valued Functions and the Moment Problem,” Operator Theory Live, Proceedings of the 22th International Operator Conference, Timisoara, 3-8 July 2008, 2012, pp. 113-123. |

[11] | J. W. Helton and M. Putinar, “Positive Polynomials in Scalar and Matrix Variables, the Spectral Theorem, and Optimization,” In: Operator Theory, Structured Matrices, and Dilations, Theta Series in Advanced Mathematics, Theta, Bucharest, 2007, pp. 229-307. |

[12] | N. I. Akhiezer, “The Classical Moment Problem and Some Related Questions in Analysis,” Oliver & Boyd, Edinburgh, 1965. |

Copyright © 2020 by authors and Scientific Research Publishing Inc.

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.