99mTc in the evaluation of microleakage of composite resin restorations with SonicFillTM. An in vitro experimental model


Introduction: The composite SonicFillTM (Kerr/Kavo) is indicated for posterior restorations, with a single increment up to 5 mm due to reduced polymerization shrinkage, thus reducing working time. Aim: Evaluation of marginal microleakage with SonicFillTM. Method and Materials: There were sectioned sixty noncarious human molars in the occluso-cervical direction. Class V cavities were prepared on each tooth with gingival margin walls in a standardized way. The specimens were divided into 4 groups: group 1—restored with SonicFillTM (Kerr/Kavo), group 2—restored with FiltekTM SupremeXTE (3M ESPE), group 3—the cavities were not restored; group 4—restored with SonicFillTM (Kerr/Kavo). In groups 1, 2 and 4 the enamel was conditioned with 37% orthophosphoric acid and applied the self-etch adhesive system Clear- fillTM SE BOND (Kuraray). The specimens were stored in distilled water at 37?C for 7 days. After, the specimens, were immersed in a solution of 99mTc-Pertechnetate and the radioactivity was assessed with a gamma camera. The nonparametric Kruskal-Wallis and Mann-Whitney test with Bonferroni correction at a significance level of 5% were used for the statistical analyses. Results: There are significant differences between the positive and negative control groups and between these and experimental groups (p < 0.05). There are no statistically significant differences between the specimens restored with SonicFillTM and FiltekTM SupremeXTE. Conclusion: The new composite SonicFillTM and FiltekTM SupremeXTE showed no difference concerning dye penetration. The Sonic- FillTM restorative system showed no influence in concerning microleakage.

Share and Cite:

Eunice, C. , Margarida, A. , João, C. , Filomena, B. , Anabela, P. , Pedro, A. , Miguel, M. , Diana, R. , Joana, M. , Mário, P. and Marques, F. (2012) 99mTc in the evaluation of microleakage of composite resin restorations with SonicFillTM. An in vitro experimental model. Open Journal of Stomatology, 2, 340-347. doi: 10.4236/ojst.2012.24058.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Radhika, M., Sajjan, G., Kumaraswamy, B. and Mittal, N. (2010) Effect of different placement techniques on marginal microleakage of deep class-II cavities restored with two composite resin formulations. Journal of Conservative Dentistry, 13, 9-15. doi:10.4103/0972-0707.62633
[2] Ben-Amar, A., Slutzky, H. and Matalon, S. (2007) The influence of 2 condensation techniques on the marginal seal of packable resin composite restorations. Quintessence International, 38, 423-428.
[3] Schneider, L., Cavalcante, L. and Silikas, N. (2010) Shrinkage stresses generated during resin-composite applications: A review. Journal of Dental Biomechanics, 2010, 1-14.
[4] Zimmerli, B., Strub, M., Jeger, F., Stadler, O. and Lussi, A. (2010) Composite materials: Composition, properties and clinical applications. Schweiz Monatsschr Zahnmed, 120, 972-979.
[5] Vyver, P. (2000) Clinical application of a new flowable base material for direct and indirect restorations. International Dentistry, 12, 18-27.
[6] Helvatjoglu-Antoniades, M., Kalinderis, K., Pedulu, L. and Papadogiannis, Y. (2004) The effect of pulse activetion on microleakage of a “packable” composite resin and two “ormocers”. Journal of Oral Rehabilitation, 31, 1068-1074. doi:10.1111/j.1365-2842.2004.01337.x
[7] Burke, F., Crisp, R., James, A., Mackenzie, L., Pal, A., Sands, P., et al. (2011) Two year clinical evaluation of a low-shrink resin composite material in UK general dental practices. Dental Materials, 27, 622-630. doi:10.1016/j.dental.2011.02.012
[8] Mahmound, S. and Al-Wakeel, E. (2011) Marginal adaptation of ormocer-, silorane-, and methacrylate-based composite restorative systems bonded to dentin cavities after water storage. Quintessence International, 42, e131- e139
[9] Hickel, R. and Manhart, J. (2001) Longevity of restorations in posterior teeth and reasons for failure. Journal of Adhesive Dentistry, 3, 45-64.
[10] Vicente, A., Ortiz, A. and Bravo, L. (2009) Microleakage beneath brackets bonded with flowable materials: Effect of thermocycling. European Journal of Orthodontics, 31, 390-396. doi:10.1093/ejo/cjn126
[11] Gogna, R., Jagadis, S. and Shashikal, K. (2011) A comparative in vitro study of microleakage by a radioactive isotope and compressive strength of three nanofilled composite resin restorations. Journal of Conservative Dentistry, 14, 128-131. doi:10.4103/0972-0707.82609
[12] Ernst, C.P., Brandenbusch, M., Meyer, G., Canbek, K., Gottschalk, F. and Willershausen, B. (2006) Two-year clinical performance of a nanofillervs a fine-particle hy- brid resin composite. Clinical Oral Investigations, 10, 119-125. doi:10.1007/s00784-006-0041-8
[13] Sybron Dental Specialties Inc., “SonicFillTM System,” 2011. www.sonicfill.eu/
[14] U. Mazzi, “Techenetium in Medicine,” In: Zolle, I., Ed., Technetium-99m pharmaceuticals: Preparation and quality control in nuclear medicine. Springer, Berlin, 2007.
[15] Heintze, S. and Zimmerli, B. (2011) Relevance of in vitro tests of adhesive and composite dental materials (part 1). Schweiz Monatsschr Zahnmed, 121, 810-815.
[16] Majety, K. and Pujar, M. (2011) In vitro evaluation of microleakage of class II packable composite resin restorations using flowable composite and resin modified glass ionomers as intermediate layers. Journal of Conservative Dentistry, 14, 414-417. doi:10.4103/0972-0707.87215
[17] Roggendorf, M., Kr?mer, N., Appelt, A., Naumann, M. and Frankenberger, R. (2011) Marginal quality of flow- able 4-mm base vs conventionally layered resin composite. Journal of Dentistry, 39, 643-647. doi:10.1016/j.jdent.2011.07.004
[18] A. Van Ende, A. Mine, J. De Munck, A. Poitevin and B. Van Meerbeek (2012) Bonding of low-shrinking composites in high C-factor cavities. Journal of Dentistry, 4, 295-303. doi:10.1016/j.jdent.2012.01.004
[19] Andrade, A., Duarte, R., Medeiros e Silva, F., Batista, A., Lima, K., Pontual, M., et al. (2011) 30-Month randomised clinical trial to evaluate the clinical performance of a nanofill and a nanohybrid composite. Journal of Dentistry, 39, 8-15. doi:10.1016/j.jdent.2010.09.005
[20] Nalcacl, A. and Ulusoy, N. (2007) Effect of thermocycling on microleakage of resin composites polymerized with LED curing techniques. Quintessence International, 38, e433-e439
[21] Mortazavi, V., Fathi, M. and Soltani, F. (2011) Effect of postoperative bleaching on etch-and-rinse and self-etch adhesives. Dental Research Journal, 8, 16-21.
[22] Amaral, F., Colucci, V., Palma-Dibb, R. and Corona, S. (2007) Assessment of in vitro methods used to promote adhesive interface degradation: A critical review. Journal of Esthetic and Restorative Dentistry, 19, 340-354. doi:10.1111/j.1708-8240.2007.00134.x
[23] Yuasa, T., Iijima, M., Ito, S., Muguruma, T., Saito, T. and Mizoguchi, I. (2010) Effects of long-term storage and thermocycling on bond strength of two self-etching primer adhesive systems. European Journal of Orthodontics, 32, 285-290. doi:10.1093/ejo/cjp118
[24] De Goes, M., Giannini, M., Di Hipólito, V., Carrilho, M., Daronch, M. and Rueggeberg, F. (2008) Microtensile bond strength of adhesive systems to dentin with or without application of an intermediate flowable resin layer. Brazilian Dental Journal, 19, 51-56. doi:10.1590/S0103-64402008000100009
[25] Perdig?o, J., Dutra-Corrêa, M., Anauate-Netto, C., Castilhos, N., Carmo, A., Lewgoy, H., et al. (2009) Two-year clinical evaluation of self-etching adhesive posterior restorations. Journal of Adhesive Dentistry, 11, 149-159.
[26] Park, J., Chang, J., Ferracane, J. and Lee, I.B. (2008) How should composite be layered to reduce shrinkage stress: Incremental or bulk filling? Dental Materials, 24, 1501-1505. doi:10.1016/j.dental.2008.03.013
[27] Lee, M.-R., Cho, B.-H., Son, H.-H., Um, C.-M. and Lee, I.-B. (2007) Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dental Materials, 23, 288-295. doi:10.1016/j.dental.2006.01.025
[28] Versluis, A., Douglas, W.H., Cross, M. and Sakaguchi, R.L. (1996) Does an incremental filling technique reduce polymerization shrinkage stresses? Journal of Dental Re- search, 75, 871-878. doi:10.1177/00220345960750030301
[29] Loguercio, A.D., Reis, A. and Ballester, R.Y. (2004) Polymerization shrinkage: Effects of constraint and filling technique in composite restorations. Dental Materials, 20, 236-243. doi:10.1016/S0109-5641(03)00098-8
[30] Penido, S., Penido, C., Santos-Pinto, A., Sakima, T. and Fontana, C. (2008) Estudo in vivo e in vitro com e sem termociclagem, da resistência ao cisalhamento de braquetes colados com fonte de luz halógena. Revista Dental Press de Ortodontia e Ortopedia Facial, 13, 66-76.
[31] Loguercio, A., Bauar, J., Reis, A. and Grande, R. (2004) In vitro microleakage of packable composites in Class II restorations. Quintessence International, 35, 29-34.
[32] Geerts, S., Seidel, L., Albert, A. and Gueders, A. (2010) Microleakage after thermocycling of three self-etch adhesives under resin-modified glass-ionomer cement restorations. International Journal of Dentistry, 2010, 1-6.
[33] Souza, R., ?zcan, M., Michida, S., Melo, R., Pavanelli, C., Bottino, M., et al. Conversion degree of indirect resin composites and effect of thermocycling on their physical properties. Journal of Prosthodontics, 19, 218-225. doi:10.1111/j.1532-849X.2009.00551.x
[34] Turk, T., Elekdag-Turk, S., Isci, D., Cakmak, F. and Oz- kalayci, N. (2010) Shear bond strength of a self-etching primer after 10,000 and 20,000 thermal cycles. Journal of Adhesive Dentistry, 12, 117-122.
[35] Ferreira, M., Botelho, M., Abrantes, M., Oliveiros, B. and Carrilho, E. (2010) Quantitative scintigraphic analysis of pulp revascularization in autotransplanted teeth in dogs. Archives of Oral Biology, 55, 825-829. doi:10.1016/j.archoralbio.2010.07.005

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.