Nonconforming H1-Galerkin Mixed Finite Element Method for Pseudo-Hyperbolic Equations

DOI: 10.4236/ajcm.2012.24036   PDF   HTML   XML   3,554 Downloads   6,351 Views   Citations

Abstract

Based on H1-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresponding optimal order error estimate is derived by the interpolation technique instead of the generalized elliptic projection which is necessary for classical error estimates of finite element analysis.

Share and Cite:

Y. Zhang, Y. Niu and D. Shi, "Nonconforming H1-Galerkin Mixed Finite Element Method for Pseudo-Hyperbolic Equations," American Journal of Computational Mathematics, Vol. 2 No. 4, 2012, pp. 269-273. doi: 10.4236/ajcm.2012.24036.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Nagumo, S. Arimoto and S. Yoshizawa, “An Active Pulse Transmission Line Simulating Nerve Axon,” Proceedings of the Institute of Radio Engineers, Vol. 50, 1965, pp. 91-102.
[2] W. M. Wan and Y. C. Liu, “Long Time Behaviors of Solutions for Initial Boundary Value Problem of Pseudo-Hyperbolic Equations,” Acta Mathematicae Applicatae Sinica, Vol. 22, No. 2, 1999, pp. 311-355.
[3] H. Guo and H. X. Rui, “Least-Squares Galerkin Procedures for Pseudo-Hyperbolic Equations,” Applied Mathematics and Computation, Vol. 189, 2007, pp. 425-439. doi:10.1016/j.amc.2006.11.094
[4] A. K. Pani, “An H1-Galerkin Mixed Finite Element Methods for Parabolic Partial Differential Equations,” SIAM Journal on Numerical Analysis, Vol. 35, No. 2, 1998, pp. 721-727. doi:10.1137/S0036142995280808
[5] A. K. Pani and G. Fairweather, “H1-Galerkin Mixed Finite Element Methods for Parabolic Parial Integro-Differential Equations,” IMA Journal of Numerical Analysis, Vol. 22, No. 2, 2002, pp. 231-252. doi:10.1093/imanum/22.2.231
[6] Y. Liu and H. Li, “H1-Galerkin Mixed Finite Element Methods for Pseudo-Hyperbolic Equations,” Applied Mathematics and Computation, Vol. 212, No. 2, 2009, pp. 446-457. doi:10.1016/j.amc.2009.02.039
[7] Y. Liu and H. Li, “A New Mixed Finite Element Method for Fourth-Order Heavy Damping Wave Equation,” Mathematica Numerica Sinica, Vol. 32, No. 2, 2010, pp. 157-170.
[8] D. Y. Shi and H. H. Wang, “An H1-Galerkin Nonconforming Mxied Finite Elment Method for Integro-Differential Equation of Parabolic Type,” Journal of Mathematical Research and Exposition, Vol. 29, No. 5, 2009, pp. 871-881.
[9] D. Y. Shi, S. P. Mao and S. C. Chen, “An Anisotropic Nonconforming Finite Element with Some Superconvergence Results,” Journal of Computational Mathematics, Vol. 23, No. 3, 2005, pp. 261-274.
[10] Q. Lin, L. Tobiska and A. H. Zhou, “Super Convergence and Extrapolation of Non-Conforming Low Order Finite Elements Applied to the Possion Equation,” IMA Journal of Numerical Analysis, Vol. 25, No. 1, 2005, pp. 160-181. doi:10.1093/imanum/drh008
[11] P. G. Ciarlet, “The Finite Element Method for Elliptic Problem,” Northe-Holland, Amsterdam, 1978.
[12] F. Stummel, “The Generalized Patch Test,” SIAM Journal on Numerical Analysis, Vol. 16, No. 3, 1979, pp. 449-471. doi:10.1137/0716037
[13] E. L. Wachspress, “Incompatible Basis Function,” International Journal for Numerical Methods in Engineering, Vol. 12, 1978, pp. 589-595. doi:10.1002/nme.1620120404
[14] Z. C. Shi, “A Convergence Condition for the Quadrilateral Wilson Element,” Numerische Mathematik, Vol. 44, No. 3, 1984, pp. 349-363. doi:10.1007/BF01405567
[15] J. S. Jiang and X. L. Cheng, “A Conforming Element like Wilson’s for Second Order Problems,” Journal of Computational Mathematics, Vol. 14, No. 3, 1992, pp. 274- 278.
[16] Y. Q. Long and Y. Xu, “Generalized Conforming Quadrilateral Membrance Element of Shecht,” Mathematica Numerica Sinica, Vol. 4, 1989, pp. 73-79.
[17] D. Y. Shi and S. C. Chen, “A kind of Improved Wilson Arbitrary Quadrilateral Elements,” Numerical Mathematics. A Journal of Chinese Universities, Vol. 16 No. 2, 1994, pp. 161-167.
[18] D. Y. Shi and S. C. Chen, “A Class of Nonconforming Arbitrary Quadrilateral Elements,” Journal of Applied Mathematics of Chinese Universities, Vol. 11, No. 2, 1996, pp. 231-238.
[19] D. Y. Shi, “Research on Nonconforming Finite Element Problems,” Ph.D. Thesis, Xi’an Jiaotong University, Xi’an, 1997.
[20] R. L. Taylor, P. J. Beresford and E. L. Wilson, “A Nonconforming Element for Stress Analysis,” International Journal for Numerical Methods in Engineering, Vol. 10, No. 6, 1980, pp. 1211-1219. doi:10.1002/nme.1620100602
[21] P. Lesaint and M. Zlamal, “Convergence for the Nonconforming Wilson Element for Arbitrary Quadrilateral Meshes,” Numerische Mathematik, Vol. 36, No. 1, 1980, pp. 33-52. doi:10.1007/BF01395987
[22] S. C. Chen and D. Y. Shi, “Accuracy Analysis for Quasi-Wilson Element,” Acta Mathematica Scientia, Vol. 20, No. 1, 2000, pp. 44-48.
[23] S. C. Chen, D. Y. Shiand and Y. C. Zhao, “Anisotropic Interpolation and Quasi-Wilson Element for Narrow Quadrilateral Meshes,” IMA Journal of Numerical Analysis, Vol. 24, No. 1, 2004, pp.77-95. doi:10.1093/imanum/24.1.77
[24] D. Y. Shi, L. F. Pei and S. C. Chen, “A Nonconforming Arbitrary Quadrilateral Finite Element Method for Approximating Maxwell’s Equations,” Numerical Mathematics. A Journal of Chinese Universities, Vol. 16, No. 4, 2007, pp. 289-299.
[25] J. K. Hale, “Ordinary Differential Equations,” Willey-Inter Science, New York, 1969.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.