[1]

J. Nagumo, S. Arimoto and S. Yoshizawa, “An Active Pulse Transmission Line Simulating Nerve Axon,” Proceedings of the Institute of Radio Engineers, Vol. 50, 1965, pp. 91102.

[2]

W. M. Wan and Y. C. Liu, “Long Time Behaviors of Solutions for Initial Boundary Value Problem of PseudoHyperbolic Equations,” Acta Mathematicae Applicatae Sinica, Vol. 22, No. 2, 1999, pp. 311355.

[3]

H. Guo and H. X. Rui, “LeastSquares Galerkin Procedures for PseudoHyperbolic Equations,” Applied Mathematics and Computation, Vol. 189, 2007, pp. 425439. doi:10.1016/j.amc.2006.11.094

[4]

A. K. Pani, “An H^{1}Galerkin Mixed Finite Element Methods for Parabolic Partial Differential Equations,” SIAM Journal on Numerical Analysis, Vol. 35, No. 2, 1998, pp. 721727. doi:10.1137/S0036142995280808

[5]

A. K. Pani and G. Fairweather, “H^{1}Galerkin Mixed Finite Element Methods for Parabolic Parial IntegroDifferential Equations,” IMA Journal of Numerical Analysis, Vol. 22, No. 2, 2002, pp. 231252.
doi:10.1093/imanum/22.2.231

[6]

Y. Liu and H. Li, “H^{1}Galerkin Mixed Finite Element Methods for PseudoHyperbolic Equations,” Applied Mathematics and Computation, Vol. 212, No. 2, 2009, pp. 446457. doi:10.1016/j.amc.2009.02.039

[7]

Y. Liu and H. Li, “A New Mixed Finite Element Method for FourthOrder Heavy Damping Wave Equation,” Mathematica Numerica Sinica, Vol. 32, No. 2, 2010, pp. 157170.

[8]

D. Y. Shi and H. H. Wang, “An H1Galerkin Nonconforming Mxied Finite Elment Method for IntegroDifferential Equation of Parabolic Type,” Journal of Mathematical Research and Exposition, Vol. 29, No. 5, 2009, pp. 871881.

[9]

D. Y. Shi, S. P. Mao and S. C. Chen, “An Anisotropic Nonconforming Finite Element with Some Superconvergence Results,” Journal of Computational Mathematics, Vol. 23, No. 3, 2005, pp. 261274.

[10]

Q. Lin, L. Tobiska and A. H. Zhou, “Super Convergence and Extrapolation of NonConforming Low Order Finite Elements Applied to the Possion Equation,” IMA Journal of Numerical Analysis, Vol. 25, No. 1, 2005, pp. 160181.
doi:10.1093/imanum/drh008

[11]

P. G. Ciarlet, “The Finite Element Method for Elliptic Problem,” NortheHolland, Amsterdam, 1978.

[12]

F. Stummel, “The Generalized Patch Test,” SIAM Journal on Numerical Analysis, Vol. 16, No. 3, 1979, pp. 449471.
doi:10.1137/0716037

[13]

E. L. Wachspress, “Incompatible Basis Function,” International Journal for Numerical Methods in Engineering, Vol. 12, 1978, pp. 589595.
doi:10.1002/nme.1620120404

[14]

Z. C. Shi, “A Convergence Condition for the Quadrilateral Wilson Element,” Numerische Mathematik, Vol. 44, No. 3, 1984, pp. 349363. doi:10.1007/BF01405567

[15]

J. S. Jiang and X. L. Cheng, “A Conforming Element like Wilson’s for Second Order Problems,” Journal of Computational Mathematics, Vol. 14, No. 3, 1992, pp. 274 278.

[16]

Y. Q. Long and Y. Xu, “Generalized Conforming Quadrilateral Membrance Element of Shecht,” Mathematica Numerica Sinica, Vol. 4, 1989, pp. 7379.

[17]

D. Y. Shi and S. C. Chen, “A kind of Improved Wilson Arbitrary Quadrilateral Elements,” Numerical Mathematics. A Journal of Chinese Universities, Vol. 16 No. 2, 1994, pp. 161167.

[18]

D. Y. Shi and S. C. Chen, “A Class of Nonconforming Arbitrary Quadrilateral Elements,” Journal of Applied Mathematics of Chinese Universities, Vol. 11, No. 2, 1996, pp. 231238.

[19]

D. Y. Shi, “Research on Nonconforming Finite Element Problems,” Ph.D. Thesis, Xi’an Jiaotong University, Xi’an, 1997.

[20]

R. L. Taylor, P. J. Beresford and E. L. Wilson, “A Nonconforming Element for Stress Analysis,” International Journal for Numerical Methods in Engineering, Vol. 10, No. 6, 1980, pp. 12111219.
doi:10.1002/nme.1620100602

[21]

P. Lesaint and M. Zlamal, “Convergence for the Nonconforming Wilson Element for Arbitrary Quadrilateral Meshes,” Numerische Mathematik, Vol. 36, No. 1, 1980, pp. 3352. doi:10.1007/BF01395987

[22]

S. C. Chen and D. Y. Shi, “Accuracy Analysis for QuasiWilson Element,” Acta Mathematica Scientia, Vol. 20, No. 1, 2000, pp. 4448.

[23]

S. C. Chen, D. Y. Shiand and Y. C. Zhao, “Anisotropic Interpolation and QuasiWilson Element for Narrow Quadrilateral Meshes,” IMA Journal of Numerical Analysis, Vol. 24, No. 1, 2004, pp.7795.
doi:10.1093/imanum/24.1.77

[24]

D. Y. Shi, L. F. Pei and S. C. Chen, “A Nonconforming Arbitrary Quadrilateral Finite Element Method for Approximating Maxwell’s Equations,” Numerical Mathematics. A Journal of Chinese Universities, Vol. 16, No. 4, 2007, pp. 289299.

[25]

J. K. Hale, “Ordinary Differential Equations,” WilleyInter Science, New York, 1969.
