Thermoelectric Performance of Micro/Nano-Structured Bismuth-Antimony-Telluride Bulk from Low Cost Mechanical Alloying

Abstract

In this work, micro/nano-structured Bi0.5Sb1.5Te3bulk thermoelectric materials were synthesized by mechanical alloying from elemental shots of Bi, Sb, and Te. Cold pressing and subsequent heat treatments with hydrogen reduction were used to form bulk solid samples with good thermoelectric properties in the temperature range around 75℃to 100℃. In comparison to crystal growth methods and chemical solution synthesis, the reported technique can be readily implemented for mass production with relatively low cost.

Share and Cite:

Z. Li, G. Zhao, P. Zhang, S. Guo and J. Tang, "Thermoelectric Performance of Micro/Nano-Structured Bismuth-Antimony-Telluride Bulk from Low Cost Mechanical Alloying," Materials Sciences and Applications, Vol. 3 No. 12, 2012, pp. 833-837. doi: 10.4236/msa.2012.312121.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Matsubara, “Development of a high Efficient Ther moelectric Stack for a Waste Exhaust Heat Recovery of Vehicle,” IEEE Proceedings of 21st International Conference on Thermoelectrics, ICT’02, Long Beach, 25 Au gust-29 August 2002, pp. 418-423. doi:10.1109/ICT.2002.1190350
[2] D. M. Rowe, “Thermoelectrics Handbook—Macro to Nano,” CRC-Taylor & Francis, Boca Raton, 2006.
[3] A. Krost, “Landolt-Bornstein (New Series), Group III: Crystal and Solid State Physics,” Springer-Verlag, Berlin, 1983, p. 234.
[4] K. Stecker, M. Stordeur and H. T. Langhammer, “Verbindungshalbleiter,” Akademische Verlagsgesellschaft Geest u. Portig, Leipzig, 1986, p. 304.
[5] P. Kao, “Growth and Analysis of Thermoelectric Material (Bi1-xSbx)2Te3 Crystal,” M.S. Thesis, National Dong Hwa University, Taiwan, 2000.
[6] M. Stordeur, M. St?lzer, H. Sobotta and V. Riede, “Investigation of the Valence Band Structure of Thermoelec tric (Bi1?xSbx)2Te3 Single Crystals,” Physica Status Solidi B, Vol. 150, No. 1, 1988, pp. 165-176. doi:10.1002/pssb.2221500120
[7] D. B. Hyun, T. S. Oh, J. S. Hwang, J. D. Shim and N. V. Kolomoets, “Electrical and Thermoelectric Properties of 90% Bi2Te3-5% Sb2Te3-5% Sb2Se3 Single Crystals Doped with SbI3,” Scripta Materialia, Vol. 40, No. 1, 1998, pp. 49-56. doi:10.1016/S1359-6462(98)00393-5
[8] O. Yamashita, S. Tomiyoshi and K. Makita, “Bismuth Telluride Compounds with High Thermoelectric Figures of Merit,” Journal of Applied Physics, Vol. 93, No. 1, 2003, p. 368. doi:10.1063/1.1525400
[9] Y. Zhao and C. Burda, “Chemical Synthesis of Bi0.5Sb1.5Te3 Nanocrystals and Their Surface Oxidation Properties,” Applied Materials and Interfaces, Vol. 1, No. 6, 2009, pp. 1259-1263. doi:10.1021/am900148d
[10] M. E. Anderson, S. S. N. Bharadwaya and R. E. Schaak, “Modified Polyol Synthesis of Bulk-Scale Nanostructured Bismuth Antimony Telluride,” Journal of Materials Chemistry, Vol. 20, No. 38, 2010, pp. 8362-8367. doi:10.1039/c0jm01424a
[11] C. Chen, D. W. Liu, B. P. Zhang and J. F. Li, “Enhanced Thermoelectric Properties Obtained by Compositional Optimization in p-Type Bix Sb2?xTe3 Fabricated by Mechanical Alloying and Spark Plasma Sintering,” Journal of Electronic Materials, Vol. 40, No. 5, 2011, pp. 942 947. doi:10.1007/s11664-010-1463-2
[12] Z. Qi, C. Zhou, H. Gao, S. Liu and C. Wang, “The Impact of Heat Treatment Process on Austenite Grain Size in Axle Steel,” Locomotive & Rolling Stock Technology, Vol. 4, 1984, p. 1.
[13] J. P. Heremans, C. M. Thrush and D. T. Morelli, “Ther mopower Enhancement in PbTe with Pb Precipitates,” Journal of Applied Physics, Vol. 98, No. 6, 2005, Article ID: 063703. doi:10.1063/1.2037209
[14] W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri and A. Majumdar, “Thermal Conductivity Re duction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors,” Physical Review Letters, Vol. 96, No. 4, 2006, Article ID: 045901. doi:10.1103/PhysRevLett.96.045901
[15] N. Satyala and D. Vashaee, “The Effect of Crystallite Size on Thermoelectric Properties of Bulk Nanostructured Magnesium Silicide (Mg2Si) Compounds,” Applied Physics Letters, Vol. 100, No. 7, 2012, Article ID: 073107. doi:10.1063/1.3684615
[16] I. H. Kim, “Electronic Transport Properties of the Flash Evaporated p-Type Bi0.5Sb1.5Te3 Thermoelectric Thin Films,” Material Letters, Vol. 44, No. 2, 2000, pp. 75-79. doi:10.1016/S0167-577X(00)00005-7
[17] C.-J. Liu, G.-J. Liu, Y.-L. Liu and L.-R. Chen, “Enhanced Thermoelectric Performance of Compacted Bi0.5Sb1.5Te3 Nanoplatelets with Low Thermal Conductivity,” Journal of Material Research, Vol. 26, No. 15, 2011, pp. 1755 1761. doi:10.1557/jmr.2011.158
[18] M. Ashida, T. Hamachiyo, K. Hasezaki, H. Matsunoshita and Z. Horita, “Effect of High Pressure Torsion on Crystal Orientation to Improve the Thermoelectric Property of a Bi2Te3-Based Thermoelectric Semiconductor,” Advanced Materials Research, Vol. 89-91, 2010, pp. 41-46. doi:10.4028/www.scientific.net/AMR.89-91.41
[19] J. S. Son, M. K. Choi, M. K. Han, K. Park, J. Y. Kim, S. J. Lim, M. Oh, Y. Kuk, C. Park, S.-J. Kim and T. Hyeon, “n-Type Nanostructured Thermoelectric Materials Pre pared from Chemically Synthesized Ultrathin Bi2Te3 Na noplates,” Nano Letters, Vol. 12, No. 2, 2012, pp. 640 647. doi:10.1021/nl203389x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.