Share This Article:

Modeling Experimental Design for Photo-Fenton Degradation of Methomyl

Abstract Full-Text HTML Download Download as PDF (Size:3201KB) PP. 216-223
DOI: 10.4236/ojapps.2012.24032    3,780 Downloads   6,932 Views   Citations

ABSTRACT

Modeling experimental design was used to study the main effects and the interaction effects between operational parameters in the photocatalytic degradation of pesticide methomyl. The important parameters which affect the removal efficiency of methomyl such as concentration of Fe(NO3)3, concentration of H2O2, initial concentration of the pesticide and pH. The parameters were coded as x1, x2, x3 and x4, consecutively, and were investigated at two levels (–1 and +1). The effects of individual variables and their interaction effects for dependent variables, namely, photocatalytic degradation efficiency (%) were determined. From the statistical analysis, the most effective parameters in the photocatalytic degradation efficiency were initial concentrations of the methomyl and Fe(NO3)3. The interaction between initial concentration of the pesticide and Fe(NO3)3 was the most influencing interaction. The optimum conditions that were obtained for the photocatalytic degradation of methomyl were: minimum quantity of contaminant: 6 × 10–5 mol.L–1, maximum quantity of Fe(NO3)3: 5 × 10–4 mol.L-1, initial pH of the solution: 3 and maximum quantity H2O2: 10–2 mol.L–1.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Abaamrane, S. Qourzal, S. Billah, A. Assabbane and Y. Ait-Ichou, "Modeling Experimental Design for Photo-Fenton Degradation of Methomyl," Open Journal of Applied Sciences, Vol. 2 No. 4, 2012, pp. 216-223. doi: 10.4236/ojapps.2012.24032.

References

[1] M. I. Badawy, M. Y. Ghaly and T. A. Gad-Allah, “Advanced Oxidation Processes for the Removal of Organophosphorus Pesticides from Wastewater,” Desalination, Vol. 194, No. 1-3, 2006, pp. 166-175. doi:10.1016/j.desal.2005.09.027
[2] W. F. Ritter, R. W. Scarborough and A. E. M. Chirnside, “Contamination of Groundwaters by Triazines, Metolachlor, and Alachlor,” Journal of Contaminant Hydrology, Vol. 15, No. 1-2, 1994, pp. 73-92. doi:10.1016/0169-7722(94)90011-6
[3] T. J. Strathmann and A. T. Stone, “Reduction of the Carbamate Pesticides Oxamyl and Methomyl by Dissolved Fe(II) and Cu(I),” Environmental Science and Technology, Vol. 35, No. 12, 2001, pp. 2461-2469. doi:10.1021/es001824j
[4] M. Tamimi, S. Qourzal, A. Assabbane, J.-M. Chovelon, C. Ferronato and Y. Ait-Ichou, “Photocatalytic Degradation of Pesticide Methomyl: Determination of the Reaction Pathway and Identification of Intermediate Products,” Photochemical and Photobiological Sciences, Vol. 5, No. 5, 2006, pp. 477-482. doi:10.1039/b517105a
[5] Y. Lin, C. Ferronato, N. Deng, F. Wu and J.-M. Chovelon, “Photocatalytic Degradation of Methylparaben by TiO2: Multivariable Experimental Design and Mechanism,” Applied Catalysis B: Environmental, Vol. 88, No. 1-2, 2009, pp. 32-41. doi:10.1016/j.apcatb.2008.09.026
[6] N. Barka, S. Qourzal, A. Assabbane, A. Nounah and Y. Ait-Ichou, “Photocatalytic Degradation of an Azo Reactive Dye, Reactive Yellow 84, in Water Using an Industrial Titanium Dioxide Coated Media,” Arabian Journal of Chemistry, Vol. 3, No. 4, 2010, pp. 279-283. doi:10.1016/j.arabjc.2010.06.016
[7] M. Abdennouri, A. Galadi, N. Barka, M. Baalala, K. Nohair, M. Elkrati, M. Sadiq and M. Bensitel. “Synthesis, Characterization and Photocatalytic Activity by ParaChlorotoluene Photoxidation of Tin Oxide Films Deposited on Pyrex Glass Substrates,” Physical and Chemical News, Vol. 54, No. 7, 2010, pp. 126-130.
[8] D. Keane, S. Basha, K. Nolan, A. Morrissey, M. Oelgem?ller and J. M. Tobin, “Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent and Kinetic Study,” Catalysis Letters, Vol. 141, No. 2, 2011, pp. 300-308. doi:10.1007/s10562-010-0485-y
[9] N. Barka, S. Qourzal, A. Assabbane, A. Nounah and Y. Ait-Ichou, “Triphenylmethane Dye, Patent Blue V, Photocatalytic Degradation on Supported TiO2: Kinetics, Mineralization and Reaction Pathway,” Chemical Engineering Communications, Vol. 198, No. 10, 2011, pp. 1233-1243. doi:10.1080/00986445.2010.525206
[10] C. S. Chiou, Y. H. Chen, C. T. Chang, C. Y. Chang, J. L. Shie and Y. S. Li, “Photochemical Mineralization of Dinbutyl Phthalate with H2O2/Fe3+,” Journal of Hazardous Materials, Vol. 135, No. 1-3, 2006, pp. 344-349. doi:10.1016/j.jhazmat.2005.11.072
[11] M. Tamimi, S. Qourzal, N. Barka, A. Assabbane and Y. A?t Ichou, “Methomyl Degradation in Aqueous Solutions by Fenton’s Reagent and the Photo-Fenton System,” Separation and Purification Technology, Vol. 61, No. 1, 2008, pp. 103-108. doi:10.1016/j.seppur.2007.09.017
[12] F. Torrades, M. Pérez, H. D. Mansilla and J. Peral, “Experimental Design of Fenton and Photo-Fenton Reactions for the Treatment of Cellulose Bleaching Effluents,” Chemosphere, Vol. 53, No. 10, 2003, pp. 1211-1220. doi:10.1016/S0045-6535(03)00579-4
[13] P. Kajitvichyanukula, M. C. Lu and A. Jamroensan, “Formaldehyde Degradation in the Presence of Methanol by Photo-Fenton Process,” Journal of Environmental Management, Vol. 86, No. 3, 2008, pp. 545-553. doi:10.1016/j.jenvman.2006.12.016
[14] I. B. S. Will, J. E. F. Moraes, A. C. S. C. Teixeira, R. Guardani and C. A. O. Nascimento, “Photo-Fenton Degradation of Wastewater Containing Organic Compounds in Solar Reactors,” Separation and Purification Technology, Vol. 34, No. 1-3, 2004, pp. 51-57. doi:10.1016/S1383-5866(03)00174-6
[15] J. Antony and R. K. Roy, “Improving the Process Quality Using Statistical Design of Experiments: A Case Study,” Quality Assurance, Vol. 6, No. 2, 1999, pp. 87-95. doi:10.1080/105294199277888
[16] D. C. Montgomery, “Design and Analysis of Experiments: Response Surface Method and Design,” John Wiley and Sons, Chichester, 2005.
[17] M. A. Rauf, N. Marzouki and B. K. Kbahti, “Photolytic Decolorization of Rose Bengal by UV/H2O2 and Data Optimization Using Response Surface Method,” Journal of Hazardous Materials, Vol. 159, No. 2-3, 2008, pp. 602-609. doi:10.1016/j.jhazmat.2008.02.098
[18] I. H. Cho and K. D. Zoh, “Photocatalytic Degradation of Azo Dye (Reactive Red 120) in TiO2/UV System: Optimization and Modelling Using a Response Surface Methodology (RSM) Based on the Central Composite Design,” Dyes and Pigments, Vol. 75, No. 3, 2007, pp. 533-543. doi:10.1016/j.dyepig.2006.06.041
[19] N. Barka, M. Abdennouri, A. Boussaoud, A. Galadi, M. Baalala, M. Bensitel, A. Sahibed-Dine, K. Nohair and M. Sadiq, “Full Factorial Experimental Design Applied to Oxalic Acid Photocatalytic Degradation in TiO2 Aqueous Suspension,” Arabian Journal of Chemistry, 2011, in press. doi:10.1016/j.arabjc.2010.12.015
[20] A. R. Khataee, M. B. Kasiri and L. Alidokht, “Application of Response Surface Methodology in the Optimization of Photocatalytic Removal of Environmental Pollutants Using Nanocatalysts,” Environmental Technology, Vol. 32, No. 15, 2011, pp. 1669-1684. doi:10.1080/09593330.2011.597432
[21] L. Huiping, Z. Guoqun, N. Shanting and L. Yiguo, “Technologic Parameter Optimization of Gas Quenching Process Using Response Surface Method,” Computational Materials Science, Vol. 38, No. 3, 2007, pp. 561-570. doi:10.1016/j.commatsci.2006.03.014
[22] G. E. P. Box and J. S. Hunter, “Multifactor Experimental Design for Exploring Response Surfaces,” Annals of Mathematical Statistics, Vol. 28, No. 1, 1957, pp. 195241. doi:10.1214/aoms/1177707047
[23] R. H. Myers and D. C. Montgomery, “Response Surface Methodology: Process and Product Optimization Using Designed Experiments,” John Wiley and Sons, New York, 2002.
[24] J. F. Fu, Y. Q. Zhao and Q. L. Wu, “Optimising Photoelectrocatalytic Oxidation of Fulvic Acid Using Response Surface Methodology,” Journal of Hazardous Materials, Vol. 144, No. 1-2, 2007, pp. 499-505. doi:10.1016/j.jhazmat.2006.10.071
[25] K. Ravikumar, S. Krishnan, S. Ramalingam and K. Balu, “Optimization of Process Variables by the Application of Response Surface Methodology for Dye Removal Using a Novel Adsorbent,” Dyes and Pigments, Vol. 72, No. 1, 2007, pp. 66-74. doi:10.1016/j.dyepig.2005.07.018
[26] B. C. Faust and J. Hoigne, “Photolysis of Fe(III)-Hydroxyl Complexes as Sources of OH Radicals in Clouds, Fog and Rain,” Atmospheric Environment, Vol. 24, No. 1, 1990, pp. 79-89. doi:10.1016/0960-1686(90)90443-Q
[27] M. S. Lucas and J. A. Peres, “Decolorization of the Azo Dye Reactive Black 5 by Fenton and Photo-Fenton Oxidation,” Dyes and Pigments, Vol. 71, No. 3, 2006, pp. 236-244. doi:10.1016/j.dyepig.2005.07.007

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.