Share This Article:

Electropolymerizable Conjugated Polymers with High Contrast in Infrared Region

Abstract Full-Text HTML XML Download Download as PDF (Size:607KB) PP. 152-158
DOI: 10.4236/ojpchem.2012.24020    3,510 Downloads   6,679 Views   Citations


Two conjugated molecules have been designed and synthesized for preparing electrochromic thin film devices on the surface of electrodes through electropolymerization. These devices exhibit good contrast at around 80% in mid-infrared region and rapid response time, especially EP02 which could be switched between on and off state in around 1 s. The interesting electrochromic properties and easy processable properties open the door to electrochromic applications using large or flexible surfaces such as IR shutters and apertures.

Cite this paper

Z. Li, S. Liu and D. Liu, "Electropolymerizable Conjugated Polymers with High Contrast in Infrared Region," Open Journal of Polymer Chemistry, Vol. 2 No. 4, 2012, pp. 152-158. doi: 10.4236/ojpchem.2012.24020.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, “Electrochromism: Fundamentals and Applications,” VCH, Weinheim, 1995.
[2] A. Maier and B. Tieke, “Coordinative Layer-by-Layer Assembly of Electrochromic Thin Films Based on Metal Ion Complexes of Terpyridine-Substituted Polyaniline Derivatives,” Journal of Physical Chemistry B, Vol. 116, No. 3, 2012, pp. 925-934. doi:10.1021/jp209600d
[3] A. Maier, K. Cheng, J. Savych and B. Tieke, “DoubleElectrochromic Coordination Polymer Network Films,” Applied Materials and Interfaces, Vol. 3, No. 7, 2011, pp. 2710-2718. doi:10.1021/am2004976
[4] P. M. Beaujuge and J. R. Reynolds, “Color Control in πConjugated Organic Polymers for Use in Electrochromic Devices,” Chemical Review, Vol. 110, No. 1, 2010, pp. 268-320. doi:10.1021/cr900129a
[5] G. Sonmez, “Polymeric Electrochromics,” Chemical Communications, Vol. 42, 2005, pp. 5251-5259. doi:10.1039/b510230h
[6] G. Sonmez, H. B. Sonmez, C. K. F. Shen and F. Wudl, “Red, Green, and Blue Colors in Polymeric Electrochromics,” Advanced Materials, Vol. 16, No. 21, 2004, pp. 1905-1908. doi:10.1002/adma.200400546
[7] I. Schwendeman, J. Hewang, D. M. Welsh, D. B. Tanner and J. R. Reynolds, “Combined Visible and Infrared Electrochromism Using Dual Polymer Devices,” Advanced Materials, Vol. 13, No. 9, 2001, pp. 634-637. doi:10.1002/1521-4095(200105)13:9<634::AID-ADMA634>3.0.CO;2-3
[8] Y. Xia, J. Luo, X. Deng, X. Li, D. Li, X. Zhu, W. Yang and Y. Cao, “Novel Random Low-Band-Gap FluoreneBased Copolymers for Deep Red/Near Infrared LightEmitting Diodes and Bulk Heterojunction Photovoltaic Cells,” Macromolecular Chemistry and Physics, Vol. 207, No. 5, 2006, pp. 511-520. doi:10.1002/macp.200500517
[9] J. Tarver, J. E. Yoo and Y. L. Loo, “Polyaniline Exhibiting Stable and Reversible Switching in the Visible Extending into the Near-IR in Aqueous Media,” Chemistry of Materials, Vol. 22, No. 7, 2010, pp. 2333-2340. doi:10.1021/cm903455w
[10] M. Dietrich, J. Heize, G. Heywang and F. J. Jonas, “Electrochemical and Spectroscopic Characterization of Polyalkylenedioxythiophenes,” Journal of Electroanalytical Chemistry, Vol. 369, No. 1-2, 1994, pp. 87-92. doi:10.1016/0022-0728(94)87085-3
[11] L. B. Groenendaal, F. Jonas, D. Freitag, H. Pierlartzik and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future,” Advanced Materials, Vol. 12, No. 7, 2000, p. 481.
[12] C. A. Thomas and J. R. Reynolds, “Poly(3,4-ethylenedioxypyrrole): Organic Electrochemistry of a Highly Stable Electrochromic Polymer,” Macromolecules, Vol. 33, No. 4, 2000, pp. 1132-1133. doi:10.1021/ma9916180
[13] K. Zong and J. R. Reynolds, “3,4-Alkylenedioxypyrroles: Functionalized Derivatives as Monomers for New Electron-Rich Conducting and Electroactive Polymers,” Journal of Organic Chemistry, Vol. 66, No. 21, 2001, pp. 6873-6882. doi:10.1021/jo001620l
[14] B. C. Thompson, P. Schottland, K. Zong and J. R. Reynolds, “In Situ Colorimetric Analysis of Electrochromic Polymers and Devices,” Chemistry of Materials, Vol. 12, No. 6, 2000, pp. 1563-1571. doi:10.1021/cm000097o
[15] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao and M. Leclerc, “Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells,” Journal of American Chemical Society, Vol. 130, No. 2, 2008, pp. 732-742. doi:10.1021/ja0771989
[16] M. Helgesen, S. A. Gevorgyan, F. C. Krebs and R. A. Janssen, “Substituted 2,1,3-Benzothiadiazoleand Thiophene-Based Polymers for Solar Cells. Introducing a New Thermocleavable Precursor,” Chemistry of Materials, Vol. 21, No. 19, 2009, pp. 4669-4675. doi:10.1021/cm901937d
[17] T. T. Steckler, X. Zhang, J. Hwang, R. Honeyager, S. Ohira, X. Zhang, A. Grant, S. Ellinger, S. A. Odom, D. Sweat, D. B. Tanner, A. G. Rinzler, S. Barlow, J. Brédas, B. Kippelen, S. R. Marder and J. R. Reynolds, “A SprayProcessable, Low Bandgap, and Ambipolar Donor-Acceptor Conjugated Polymer,” Journal of American Chemical Society, Vol. 131, No. 8, 2009, pp. 2824-2826. doi:10.1021/ja809372u
[18] P. Chandrasekhar, G. C. P. Birur, S. Stevens, E. A. Pierson and K. L. Miller, “Far Infrared Electrochromism in Unique Conducting Polymer Systems,” Synthetic Metals, Vol. 119, No. 1-3, 2001, pp. 293-294. doi:10.1016/S0379-6779(00)01455-7
[19] P. Chandrasekhar, US Patent 5 995 273, 1999.
[20] J. Roncali, P. Blanchard and P. Frère, “3,4-Ethylenedioxythiophene (EDOT) as a Versatile Building Block for Advanced Functional π-Conjugated Systems,” Journal of Materials Chemistry, Vol. 15, No. 16, 2005, pp. 15891610. doi:10.1039/b415481a
[21] P. Chandrasekhar, “Conducting Polymers, Fundamentals and Applications: A Practical Approach,” Kluwer, Dordrecht, 1999. doi:10.1007/978-1-4615-5245-1
[22] T. A. Skotheim, R. L. Elsenbaumer and J. R. Reynolds, “Handbook of Conducting Polymers Marcel,” Dekker, New York, 1998.
[23] Z. Li, Y. Zhang, A. L. Holt, B. P. Kolasa, J. G. Wehner, A. Hampp, G. C. Bazan, T. Nguyen and E. M. Daniel, “Electrochromic Devices and Thin Film Transistors from a New Family of Ethylenedioxythiophene Based Conjugated Polymers,” New Journal of Chemistry, Vol. 35, No. 6, 2011, pp. 1327-1334. doi:10.1039/c0nj00837k
[24] B. Sankaran and J. R. Reynolds, “High-Contrast Electrochromic Polymers from Alkyl-Derivatized Poly(3,4-ethylenedioxythiophenes),” Macromolecules, Vol. 30, No. 9, 1997, pp. 2582-2588. doi:10.1021/ma961607w
[25] W. L. F. Armarego and C. L. L. Chai, “Purification of Laboratory Chemicals,” 5th Edition, Elsevier, Amsterdam, 2003.
[26] C. Zhang, US Patent No. 2004 0229 925, 2004.
[27] P. H. Kwan and T. M. Swager, “Intramolecular Photoinduced Charge Transfer in Rotaxanes,” Journal of American Chemical Society, Vol. 127, No. 16, 2005, pp. 59025909. doi:10.1021/ja042535o
[28] E. M. Galand, J. K. Mwaura, A. A. Argun, K. A. Abboud, T. D. McCarley and J. R. Reynolds, “Spray Processable Hybrid 3,4-Propylenedioxythiophene: Phenylene Electrochromic Polymers,” Macromolecules, Vol. 39, No. 21, 2006, pp. 7286-7294. doi:10.1021/ma060466n
[29] A. Durmus, G. E. Gunbas and L. Toppare, “New, Highly Stable Electrochromic Polymers from 3,4-Ethylenedioxythiophene-Bis-Substituted Quinoxalines toward Green Polymeric Materials,” Chemistry of Materials, Vol. 19, No. 25, 2007, pp. 6247-6251. doi:10.1021/cm702143c
[30] C. Kitamura, S. Tanaka and Y. Yamashita, “Design of Narrow-Bandgap Polymers. Syntheses and Properties of Monomers and Polymers Containing Aromatic-Donor and o-Quinoid-Acceptor Units,” Chemistry of Materials, Vol. 8, No. 2, 1996, pp. 570-578. doi:10.1021/cm950467m
[31] B. D. Reeves, C. R. G. Grenier, A. A. Argun, A. Cirpan, T. D. McCarley and J. R. Reynolds, “Spray Coatable Electrochromic Dioxythiophene Polymers with High Coloration Efficiencies,” Macromolecules, Vol. 37, No. 20, 2004, pp. 7559-7569. doi:10.1021/ma049222y

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.