A Multiparameter Colloidal Titrations for the Determination of Cationic Polyelectrolytes

Abstract

In water treatment processes and conditioning drinking water, PEs are widely used; however, their environmental impact is still doubtful, since residual concentrations increase organic matter content and represents a potential health hazard. This paper demonstrates a multiparametric study of two colloidal titration methods: spectrophotometric and zeta potential end point detection. The first one was optimized to guarantee the accuracy of cationic commercial PE quantification. It includes the indicator dose optimization using analytical criteria for competing equilibria, a calibration curve for two ranges of CPE concentration (1 - 5 ppm and 5 - 100 ppm) and the interference study of flocculant and Sn in the CPE quantification. The second method provides a physicochemical validation of the electric surface phenomena occurring during the colloidal titration and the end point detection. As an additional contribution the zeta potential titration was discussed and proposed as an alternative method for quantifying CPE when the sample is metal free.

Share and Cite:

E. Maldonado, A. Terán and M. Guzmán, "A Multiparameter Colloidal Titrations for the Determination of Cationic Polyelectrolytes," Journal of Environmental Protection, Vol. 3 No. 11, 2012, pp. 1559-1570. doi: 10.4236/jep.2012.311172.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. E. Hatch, “Removal of Heavy Metals from Aqueous Solutions,” US Patent 3859210, 1975.
[2] X. Feng, M. Leduc and R. Pelton, “Polyelectrolyte Com plex Characterization with Isothermal Titration Calorimetry and Colloid Titration,” Colloids and Surfaces A: Physicochemical Engineering Aspects, Vol. 317, No. 1-3, 2008, pp. 535-542. doi:10.1016/j.colsurfa.2007.11.053
[3] M. Fielding, J. Hutchison, et al., “Analytical Methods for Polymers and Their Oxidation By-Products,” American Water Works Association Research Foundation, 1999, p. 13.
[4] V. T. Wee, “Determination of Cationic Surfactants in Waste and River Waters,” Water Research, Vol. 18, No. 2, 1984, pp. 223-225. doi:10.1016/0043-1354(84)90072-1
[5] S. V. Kozel, E. K Skosyrskaya and M. K. Beklemishev, “Kinetic Methods for Determining Water-Soluble Polymers,” Journal of Analytical Chemistry, Vol. 63, No. 7, 2008, pp. 693-699. doi:10.1134/S1061934808070162
[6] N. S. C. Becker, D. M Bennett, B. A. Bolto, et al., “Detection of Polyelectrolytes at Trace Levels in Water by Fluorescent Tagging,” Reactive & Functional Polymers, Vol. 60, 2004, pp. 183-193. doi:10.1016/j.reactfunctpolym.2004.02.022
[7] T. Hanasaki, H. Ohnishi, A. Nikaidoh, et al., “Determination of Trace Polymer in Waste Water,” Bulletin of Environmental Contamination and Toxicology, Vol. 35, No. 1, 1985, pp. 476-481. doi:10.1007/BF01636541
[8] M. Tsubouchi, H. Mitsushio and N. Yamasaki, “Determination of Cationic Surfactants by Two-Phase Titration,” Analytical Chemistry, Vol. 53, No. 12, 1981, pp. 1957-1959. doi:10.1021/ac00235a060
[9] D. P Parazak, C. W. Burkhardt and K. J. McCarthy, “De termination of Low Levels of Cationic Polyelectrolytes in Water,” Analytical Chemistry, Vol. 59, No. 10, 1987, pp. 1444-1445. doi:10.1021/ac00137a015
[10] V. P. Y. Gadzekpo, K. P. Xiao, H. Aoki, et al., “ Voltammetric Detection of the Polycation Protamine by the Use of Electrodes Modified with Self-Assembled Monolayers of Thioctic Acid,” Analytical Chemistry, Vol. 71, No. 22, 1999, pp. 5109-5115. doi:10.1021/ac990580m
[11] J. Kawase and M. Yamanaka, “Continuous Solvent-Ex traction Method for the Spectrophotometric Determination of Cationic Surfactants,” Analyst, Vol. 104, No. 1241, 1979, pp. 750-755. doi:10.1039/an9790400750
[12] W. Weindel and H. Sontheimer, Chemical Abstract, Vol. 112, 1971, pp. 74.
[13] T. Masadome, “Flow Injection Spectrophotometric Determination of Anionic Polyelectrolytes Using the Cationic Dyes,” Analytical Letters, Vol. 34, No. 15, 2001, pp. 2711-2719. doi:10.1081/AL-100108417
[14] K. T?ei and T. Zaitsu, “Spectrophotometric Determi nation of Micro Amounts of Cationic Polymeric Flocculants by Flow Injection Analysis,” Analytical Chimica Acta, Vol. 174, 1985, pp. 369-373. doi:10.1016/S0003-2670(00)84402-5
[15] H. Terayama, “Method of Colloid Titration (A New Titration between Polymer Ions),” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 8, No. 2, 1952, pp. 243-253. doi:10.1002/pol.1952.120080209
[16] T. Masadome and T. Imato, “Use of Marker Ion and Cationic Surfactant Plastic Membrane Electrode for Potentiometric Titration of Cationic Polyelectrolytes,” Talanta, Vol. 60, No. 4, 2003, pp. 663-668. doi:10.1016/S0039-9140(03)00140-1
[17] H. P. Cardwell, “Technique of Streaming Current Detection and Applications,” Environmental Science and Technology, Vol. 1, No. 6, 1967, pp. 482-487. doi:10.1021/es60006a002
[18] K. T?ei and T. Kohara, “A Conductometric Method for Colloid Titrations,” Analytica Chimica Acta, Vol. 83, 1976, pp. 59-65. doi:10.1016/S0003-2670(01)84631-6
[19] D. F. Hodgson and E. J. Amis, “Viscometric Titration of a Linear Polyelectrolyte,” Journal of Chemical Physics, Vol. 91, No. 4, 1989, p. 2635. doi:10.1063/1.456972
[20] K. T?ei and M. Sawada, “A Turbidimetric Method for Colloid Titrations,” Analytica Chimica Acta, Vol. 89, No. 2, 1977, pp. 383-389. doi:10.1016/S0003-2670(01)84736-X
[21] H. Tanaka and Y. Sakamoto, “Polyelectrolyte Titration Using Fluorescent Indicator. I. Direct Titration of Anionic and Cationic Polyelectrolytes with 10?4N Standard Solutions,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 31, No. 11, 1993, pp. 2687-2691.
[22] H. Tanaka and Y. Sakamoto, “Polyelectrolyte Titration Using Fluorescent Indicator. II. Analysis of Cationic Starches and Flocculants,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 31, No. 11, 1993, pp. 2693-2696.
[23] T. Masadome and T. Imato, “Potentiometric Titration of Anionic Polyelectrolytes Using a Cationic Surfactant So lution as a Titran and a Titrant-Sensitive Plasticized Poly(Vinyl Chloride) Membrane Electrode,” Journal of Analytical Chemistry, Vol. 358, No. 4, 1997, pp. 538-540.
[24] S. K. Kam and J. Gregory, “Charge Determination of Synthetic Cationic Polyelectrolyte by Colloid Titration,” Colloids and Surfaces A: Physicochemical and Engineer ing Aspects, Vol. 159, No. 1, 1999, pp. 165-179. doi:10.1016/S0927-7757(99)00172-7
[25] K. H. Wasmer, U. Schroeder and D. Horn, “Characteriza tion and Detection of Polyanions by Direct Polyelectro lyte Titration,” Die Makromolekulare Chemie, Vol. 192, No. 3, 1991, pp. 553-565.
[26] Zetasizer Nano Series User Manual, Malvern Instruments, England, 2004.
[27] J. S. Fritz, J. P. Sickafoose and M. A. Schmitt, “Determination of Total Hardness in Water Employing Visual and Spectrophotometric Titration Procedures,” Analytical Chemistry, Vol. 41, No. 14, 1969, pp. 1954-1958. doi:10.1021/ac50159a028
[28] U. Sj?din and L. ?dberg, “The Influence of Metal Ions on Polyelectrolyte Titration,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 116, No. 3, 1996, pp. 269-275. doi:10.1016/0927-7757(96)03554-6
[29] M. Rice and J. Roeraade, “Continuous Filtration and Ti tration Apparatus for Real Time Monitoring of Polyelectrolyte Concentration and Cationic Demand of a Paper Furnish,” Nordic Pulp and Paper Research Journal, Vol. 18, No. 1, 2003, pp. 95-107.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.