Microwave based reversible unfolding and refolding of alcohol oxidase protein probed by fluorescence and circular dichroism spectroscopy

DOI: 10.4236/jbpc.2012.34039   PDF   HTML     3,825 Downloads   6,901 Views   Citations


The reversible effect of microwave mediated denaturation of protein at low exposure time of 10 s has been demonstrated for the first time. The effect of microwave (2.45 GHz and 900 W) was confirmed in a homo-octameric alcohol oxidase in aqueous solution of pH 7.5. The unfolding events did not transverse through any intermediate states and no subunits of the protein were detached during the process. The refolding of the protein achieved at 4℃ for 24 h had regenerated the native enzyme. This reversible refolding approach excludes any chemical reagent and therefore established as simple technique for protein unfolding-folding studies.

Share and Cite:

Sekhar R. Chinnadayyala, S. , Santhosh, M. and Goswami, P. (2012) Microwave based reversible unfolding and refolding of alcohol oxidase protein probed by fluorescence and circular dichroism spectroscopy. Journal of Biophysical Chemistry, 3, 317-323. doi: 10.4236/jbpc.2012.34039.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Copty, A.B., Oz, Y.N., Barak, L., Golosovsky, M. and Davidov, D. (2006) Evidence for a specific microwave radiation effect on the green fluorescent proteins. Biophysical Journal, 91, 4113-4123. doi:10.1529/biophysj.106.084111
[2] Foster, K.R. (2000) Thermal and Nonthermal mechanisms of interaction of radio frequency energy with biological systems. IEEE Transactions of Plasma Science, 28, 15-23. doi:10.1109/27.842819
[3] Adair, R.K. (2003) Biophysical limits on athermal effects of RF and microwave radiation. Bioelectromagnetics, 24, 39-48. doi:10.1002/bem.10061
[4] Kirschvink, J.L. (1996) Microwave absorption by magnetite: A possible mechanism for coupling Nonthermal levels of radiation to biological systems. Bioelectromagnetics, 17, 187-194. doi:10.1002/(SICI)1521-186X(1996)17:3<187::AID-BEM4>3.0.CO;2-#
[5] Fr?hlich, H. (1980) The biological effects of microwaves and related questions. Advances in Electronics and Electron Physics, 53, 85-152. doi:10.1016/S0065-2539(08)60259-0
[6] Adair, R.K. (2002) Vibrational resonances in biological systems at microwave frequencies. Biophysical Journal, 82, 1147-1152. doi:10.1016/S0006-3495(02)75473-8
[7] Bohr, H., and Bohr, J. (2000) Microwave enhanced folding and denaturation of globular proteins. Physical Review E, 61, 4310-4314. doi:10.1103/PhysRevE.61.4310
[8] Taylor, L.S. (1981) The mechanism of athermal microwave biological effects. Bioelectromagnetics, 2, 259-267. doi:10.1002/bem.2250020307
[9] Porcelli, M., Cacciapuoti, G., Fusco, S., Massa, R., d’Ambrosio, G., Bertoldo, C., De Rosa, M. and Zappia, V. (1997) Non-thermal effects of microwaves on proteins: Thermophilic enzymes as model system. FEBS Letters, 402, 102-106. doi:10.1016/S0014-5793(96)01505-0
[10] de Pomerai, D., Daniells, C., David, H., Allan, J., Duce, I., Mutwakil, M., Thomas, D., Sewell, P., Tattersall, J., Jones, D. and Candido, P. (2000) Nonthermal heat-shock response to microwaves. Nature, 405, 417-418. doi:10.1038/35013144
[11] Mancinelli, F., Caraglia, M., Abbruzzese, A., d’Ambrosio, G., Massa, R. and Bismuto, E. (2004) Non-thermal effects of electromagnetic fields at mobile phone frequency on the refolding of an intracellular protein: Myoglobin. Journal of Cellular Biochemistry, 93, 188-196. doi:10.1002/jcb.20164
[12] Li, D.F., Mu, C.D., Zhang, Q., Zhou, Y.L. and Lin, W. (2010) Effect of microwave irradiation on collagen denaturation. Journal of Food Biochemistry, 34, 1319-1331. doi:10.1111/j.1745-4514.2010.00334.x
[13] Ozimek, P., Veenhuis, M. and Van der Klei, I.J. (2005) Alcohol oxidase: A complex peroxisomal, oligomeric flavorprotein. FEMS Yeast Research, 5, 975-983. doi:10.1016/j.femsyr.2005.06.005
[14] Visser, N.V., Wang D., Stanley W.A., Groves, M.R., Wilmanns, M., Veenhuis, M. and Van der Klei, I.J. (2007) Octameric alcohol oxidase dissociates into stable, soluble monomers upon incubation with dimethylsulfoxide. Archives of Biochemistry and Biophysics, 459, 208-213. doi:10.1016/j.abb.2007.01.005
[15] Kiess, M., Hecht, H.J. and Kalisz, H.M (1998) Glucose oxidase from Penicillium amagasakiense. Primary structure and comparison with other glucose-methanol-choline (GMC) oxidoreductases. European Journal of Biochemistry, 252, 90-99. doi:10.1046/j.1432-1327.1998.2520090.x
[16] Boteva, R., Visser, J.W.G., Filippi, B., Vriend, G., Veenhuis, M. and Van der Klei, I.J. (1999) Conformational transitions accompanying oligomerzation of yeast Alcohol oxidase, a peroxisomal flavoenzyme. Biochemistry, 38, 5034-5044. doi:10.1021/bi982266c
[17] Ellis, S.B., Burst, P.F., Koutz, P.J., Waters, A.F., Harpold, M.M. and Gingeras, T.R. (1985) Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Molecular Cell Biology, 5, 1111-1121.
[18] Tykarska, E., Lebioda, L., Marchut, E., Steczko, J. and Stec, B. (1990) Crystallization of alcohol oxidase from Pichia pastoris. Secondary structure predictions indicate a domain with the eight fold α/β-barrel fold. Journal of Protein Chemistry, 9, 83-86. doi:10.1007/BF01024988
[19] Matthews, B.W. (1993) Structural and genetic analysis of protein stability. Annual Review of Biochemistry, 62, 139-160. doi:10.1146/annurev.bi.62.070193.001035
[20] Schindler, T., Herder, M., Marahiel, M.A. and Schmid, F.X. (1995) Extremely rapid protein folding in the absence of intermediates. Nature Structural Biology, 2, 663-673. doi:10.1038/nsb0895-663
[21] Teilum, K., Maki, K., Kragelund, B.B., Poulsen, F.M., Roder, H. (2002) Early kinetic intermediate in the folding of acyl-coenzyme a binding protein detected by fluorescence labeling and ultrarapid mixing. Proceedings of the National Academy of Sciences USA, 99, 9807-9812. doi:10.1073/pnas.152321499
[22] Maheshwari, A., Verma, V.K. and Chaudhuri, T.K. (2010) Equilibrium and kinetics of the unfolding and refolding of escherichia coli malate synthase G monitored by circular dichroism and fluorescence spectroscopy. Biochimie, 92, 491-498. doi:10.1016/j.biochi.2010.01.009
[23] Lim, W.K., Rosgenc, J. and Englandera, S.W. (2009) Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group. Proceedings of the National Academy of Sciences USA, 106, 2595-2600. doi:10.1073/pnas.0812588106
[24] Monera, O.D., Kay, C.M. and Hodges, R.S. (1994) Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Science, 3, 1984-1991. doi:10.1002/pro.5560031110
[25] Parisi, M., Mazzini, A., Sorbi, R.T., Ramoni, R., Grolli, S. and Favilla, R. (2003) Unfolding and refolding of porcine odorant binding protein in guanidinium hydrochloride: Equilibrium studies at neutral pH. Biochimica et Biophysica Acta, 1652, 115-125. doi:10.1016/j.bbapap.2003.08.009
[26] Xie, Q. and Zhou, H.M. (2004) Refolding intermediate of guanidine hydrochloride denatured aminoacylase. The International Journal of Biochemistry and Cell Biology, 36, 1332-1340. doi:10.1016/j.biocel.2003.10.021
[27] Keesey, J. (1987) Biochemica information. Boehringer Mannheim Biochemicals, Indianapolis.
[28] Maskevich, A.A., Artsukevich, I.M. and Stepuro, V.I. (1997) Fluorescent properties of the Alcohol oxidase prosthetic group and their relationship to the functional state of proteins. Journal of Molecular Structure, 408, 261-264. doi:10.1016/S0022-2860(96)09538-5
[29] Yang, J.T., Wu, C.-S. and Martinez, H.M. (1996) Calculation of protein conformation from circular dichroism. Methods Enzymology, 130, 208-269. doi:10.1016/0076-6879(86)30013-2
[30] Woody, R.W. (1996) Theory of circular dichroism of proteins. In: Fasman, G.D., Ed., Circular Dichroism and the Conformational Analysis of Biomolecules, Plenum Press, New York, 25-67.
[31] Dawkins, A.W.J., Nightingale, N.R.V., South, G.P., Sheppard, R.J. and Grant, E.H. (1979) The role of water in microwave absorption by biological material with particular reference to microwave hazards. Physics in Medicine and Biology, 24, 1168-1176. doi:10.1088/0031-9155/24/6/007
[32] Feldman, Y., Ermolina, I. and Hayashi, Y. (2003) Time domain dielectric spectroscopy study of biological systems. IEEE Transactions on Dielectrics and Electrical Insulation, 10, 728-753. doi:10.1109/TDEI.2003.1237324

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.