Influence of Single Use and Combination of Reductants on the Size, Morphology and Growth Steps of Gold Nanoparticles in Colloidal Mixture

Abstract

A comprehensive investigation on the formation mechanism of gold nanoparticles (AuNPs) in colloidal mixture obtained from the reduction of chloroauric acid (HAuCl4) solution using a single reducing agent (sodium citrate; process-I), (tannic acid; process-II), and a combination of two reducing agents (sodium citrate plus tannic acid; process-III) is reported. The growth steps at different time intervals during synthesis of colloidal AuNPs were monitored in situ and ex situ using various methods for all the three processes. The measurement of changes in the surface plasmon band position of colloidal AuNPs, along with dynamic light scattering results gave important information for the first assessing of particle size, shape and distribution. Besides, the size and morphological changes at different stages during different processes were also analyzed by transmission electron microscopy. The final Au particles of processes-I & II exhibited different shapes (spherical and nanowires) with particle size and nano wire diameter of 12 nm and 17 nm, respectively. Nevertheless, combination of two reductants (process-III) surprisingly leads to drastically reduced size (ca. 3 nm) with spherical morphology compared to their parent solutions with either of single reducing agent. This result clearly indicates that the combination of reductants has a significant influence on the particle size, morphology and formation mechanism.

Share and Cite:

A. Alshammari, A. K?ckritz, V. Narayana Kalevaru, A. Bagabas and A. Martin, "Influence of Single Use and Combination of Reductants on the Size, Morphology and Growth Steps of Gold Nanoparticles in Colloidal Mixture," Open Journal of Physical Chemistry, Vol. 2 No. 4, 2012, pp. 252-261. doi: 10.4236/ojpc.2012.24033.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science, Vol. 271, No. 5251, 1996, pp. 933-937. doi:10.1126/science.271.5251.933
[2] M.-C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chemical Reviews, Vol. 104, No. 1, 2004, pp. 293-346. doi:10.1021/cr030698+
[3] K. E. Geckeler and E. Rosenberg, “Functional Nanomaterials,” American Scientific Publicationn, Valencia, 2006.
[4] A. S. K. Hashmi and G. J. Hutchings, “Gold Catalysis,” Angewandte Chemie International Edition, Vol. 45, No. 118, 2006, pp. 7896-7936. doi:10.1002/ange.200602454
[5] R. Narayana and M. A. El-Sayed, “Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution,” Nano Letters, Vol. 4, No. 7, 2004, pp. 1343-1348.
[6] M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chemical Reviews, Vol. 104, No. 1, 2004, pp. 293-346. doi:10.1021/cr030698+
[7] B. L. V. Prasad, S. I. Stoeva, C. M. Sorensen, V. Zaikovski and K. J. Klabunde, “Gold Nanoparticles as Catalysts for Polymerization of Alkylsilanes to Siloxane Nanowires, Filaments, and Tubes,” Journal of the American Chemical Society, Vol. 125, No. 35, 2003, pp. 10488-10489. doi:10.1021/ja035046h
[8] M. Haruta, “Gold Rush,” Nature, Vol. 437, No. 7062, 2005, pp. 1098-1099. doi:10.1038/4371098a
[9] D. V. Leff, P. C. Ohara, J. R. Heath and W. M. Gelbart, “Thermodynamic Control of Gold Nanocrystal Size: Experiment and Theory,” The Journal of Physical Chemistry, Vol. 99, No. 18, 1995, pp. 7036-7041. doi:10.1021/j100018a041
[10] R. L. Whetten and W. M. Gelbart, “Nanocrystal Microemulsions: Surfactant-Stabilized Size and Shape,” The Journal of Physical Chemistry, Vol. 98, No. 13, 1994, pp. 3544-3549. doi:10.1021/j100064a042
[11] N. R. Jana, “Shape Effect in Nanoparticle Self-Assembly,” Angewandte Chemie International Edition, Vol. 43, No. 12, 2004, pp. 1536-1540.
[12] A. Gole and C. Murphy, “Seed-Mediated Synthesis of Gold Nanorods:? Role of the Size and Nature of the Seed,” Journal of Materials Chemistry, Vol. 16, No. 19, 2004, pp. 36633-3640. doi:10.1021/cm0492336
[13] G. Schmid, “Large Clusters and Colloids. Metals in the Embryonic State,” Chemical Reviews, Vol. 92, No. 8, 1992, pp. 1709-1727. doi:10.1021/cr00016a002
[14] K. Esumi, A. Suzuki, N. Aihara, K. Usui and K. Torigoe, “Preparation of Gold Colloids with UV Irradiation Using Dendrimers as Stabilizer,” Langmuir, Vol. 14, No. 12, 1998, pp. 3157-3159. doi:10.1021/la980162x
[15] S. Kapoor, “Preparation, Characterization, and Surface Modification of Silver Particles,” Langmuir, Vol. 14, No. 5, 1998, pp. 1021-1025. doi:10.1021/la9705827
[16] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot and A. Plech, “Turkevich Method for Gold Nanoparticle Synthesis Revisited,” The Journal of Physical Chemistry B, Vol. 110, No. 32, 2006, pp. 15700-15707. doi:10.1021/jp061667w
[17] V. K. LaMer and R. H. Dinegar, “Theory, Production and Mechanism of Formation of Monodispersed Hydrosols,” Journal of the American Chemical Society, Vol. 72, No. 11, 1950, pp. 4847-4854. doi:10.1021/ja01167a001
[18] M. K. Chow and C. F. Zukoski, “Gold Sol Formation Mechanisms: Role of Colloidal Stability,” Journal of Colloid and Interface Science, Vol. 165, No. 1, 1994, pp. 97-109. doi:10.1006/jcis.1994.1210
[19] M. A. Watzky and R. G. Finke, “Transition Metal Nanocluster Formation Kinetic and Mechanistic Studies. A New Mechanism When Hydrogen Is the Reductant:? Slow, Continuous Nucleation and Fast Autocatalytic Surface Growth,” Journal of the American Chemical Society, Vol. 119, No. 43, 1997, pp. 10382-10400. doi:10.1021/ja9705102
[20] K. R. Brown and M. Natan, “Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces,” Langmuir, Vol. 14, No. 4, 1998, pp. 726-728. doi:10.1021/la970982u
[21] L. Cao, T. Zhu and Z. Liu, “Formation Mechanism of Nonspherical Gold Nanoparticles during Seeding Growth: Roles of Anion Adsorption and Reduction Rate,” Journal of Colloid and Interface Science, Vol. 293, No. 1, 2006, pp. 69-76. doi:10.1016/j.jcis.2005.06.012
[22] A. Pongpeerapat, C. Wanawongthai, K. Moribe and K. Yamamoto, “Formation Mechanism of Colloidal Nanoparticles Obtained from Probucol/PVP/SDS Ternary Ground Mixture,” International Journal of Pharmaceutics, Vol. 352, No. 1-2, 2008, pp. 309-316. doi:10.1016/j.ijpharm.2007.10.052
[23] M. Harada, K. Saijo and N. Sakamoto, “Characterization of Metal Nanoparticles Prepared by Photoreduction in Aqueous Solutions of Various Surfactants Using UV-Vis, EXAFS and SAXS,” Colloids and Surfaces A, Vol. 349, No. 1-3, 2009, pp. 176-188. doi:10.1016/j.colsurfa.2009.08.015
[24] A. Cacciuto, S. Auer and D. Frenkel, “Onset of Heterogeneous Crystal Nucleation in Colloidal Suspensions,” Nature, Vol. 428, No. 6981, 2004, pp. 404-406. doi:10.1038/nature02397
[25] H. Mühlpfordt, “The Preparation of Colloidal Gold Particles Using Tannic Acid as an Additional Reducing Agent,” Expirentia, Vol. 38, No. 9, 1982, pp. 1127-1128. doi:10.1007/BF01955405
[26] G. Frens, “Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions,” Nature Physical Science, Vol. 241, No. 105, 1973, pp. 20-22.
[27] A. I. Kirkland, P. P. Edward, D. A. Jefferson and D. G. Duff, “The Structure, Characterization, and Evolution of Colloidal Metals,” Annual Reports Section C (Physical Chemistry), Vol. 87, 1990, pp. 247-304. doi:10.1039/pc9908700247
[28] S. Link, C. Burda, Z. L. Wang and M. A. El-Sayed, “Electron Dynamics in Gold and Gold-Silver Alloy Nanoparticles: The Influence of a Nonequilibrium Electron Distribution and the Size Dependence of the Electron-Phonon Relaxation,” Journal of Chemical Physics, Vol. 111, No. 3, 1999, pp. 1255-1264. doi:10.1063/1.479310
[29] J. L. Yao, G. P. Pan, K. H. Xue, D. Y. Wu, B. Ren, D. M. Sun, J. Tang, X. Xu and Z. Q. Tian, “A Complementary Study of Surface-Enhanced Raman Scattering and Metal Nanorod Arrays,” Pure and Applied Chemistry, Vol. 72, No. 1-2, 2000, pp. 221-228. doi:10.1351/pac200072010221
[30] S. Link and M. A. El-Sayed, “Optical Properties and Ultrafast Dynamics in Metallic Nanocrystals,” Annual Review of Physical Chemistry, Vol. 54, 2003, pp. 331-366. doi:10.1146/annurev.physchem.54.011002.103759
[31] G. Mie, “Simulation of the Colour Effects Connected with Colloidal Gold Particles,” Annals of Physics, Vol. 25, No. 3, 1908, pp. 377-445. doi:10.1119/1.1621030
[32] C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” The Journal of Physical Chemistry B, Vol. 105, No. 24, 2001, pp. 5599-5611. doi:10.1021/jp010657m
[33] S. Link, M. B. Mohamed and M. A. El-Sayed, “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant,” The Journal of Physical Chemistry B, Vol. 103 No. 16, pp. 3073-3077. doi:10.1021/jp990183f
[34] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zheng, “Photoinduced Conversion of Silver Nanospheres to Nanoprisms,” Science, Vol. 294, No. 5548, 2001, pp. 1901-1903. doi:10.1126/science.1066541
[35] M. D. Malinsky, K. L. Kelly, G. Schatz and R. P. Van Duyne, “Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Al Kanethiol Self-Assembled Monolayers,” Journal of the American Chemical Society, Vol. 123, No. 7, 2001, pp. 1471-1482. doi:10.1021/ja003312a
[36] P. Mulvaney, “Surface Plasmon Spectroscopy of Nanosized Metal Particles,” Langmuir, Vol. 12, No. 3, 1996, pp. 788-800. doi:10.1021/la9502711
[37] I. O. Sosa, C. Noguez and R. G. Barrera, “Optical Properties of Metal Nanoparticles with Arbitrary Shapes,” The Journal of Physical Chemistry B, Vol. 107, No. 26, 2003, pp. 6269-6275. doi:10.1021/jp0274076
[38] M. M. Alvarez, J. T. Khoury, T. J. Schaaff, M. N. Shafigullin, I. Vezmar and R. L. Whetten, “Optical Absorption Spectra of Nanocrystal Gold Molecules,” Journal of Physical Chemistry, Vol. 101, No. 12, 1997, pp. 3706-3719. doi:10.1021/jp962922n
[39] U. Kreibig and L. Genzel, “Optical Absorption of Small Metallic Particles,” Surface Science, Vol. 156, No. 2-3, 1985, pp. 678-700. doi:10.1016/0039-6028(85)90239-0
[40] M. Tréguer-Delapierre, J. Majimel, S. Mornet, E. Duguet and S. Ravaine, “Synthesis of Non-Spherical Gold Nanoparticles,” Gold Bulls, Vol. 41, No. 2, 2008, pp. 195-207. doi:10.1007/s13404-011-0037-2
[41] T. R. Jensen, R. P. Van Duyne, S. A. Johnson and V. A. Maroni, “Surface-Enhanced Infrared Spectroscopy: A Comparison of Metal Island Films with Discrete and Nondiscrete Surface Plasmons,” Applied Spectroscopy, Vol. 54, No. 3, 2000, pp. 371-377.
[42] T. R. Jensen, M. D. Malinsky, C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” Journal of Physical Chemistry B, Vol. 104, No. 45, 2000, pp. 10549-10565. doi:10.1021/jp002435e
[43] E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Advanced Materials, Vol. 16, No. 19, 2004, pp. 1685-1709. doi:10.1002/adma.200400271
[44] B. K. Jena and C. R. Raj, “Synthesis of Flower-Like Gold Nanoparticles and Their Electrocatalytic Activity towards the Oxidation of Methanol and the Reduction of Oxygen,” Langmuir, Vol. 23, No. 7, 2007, pp. 4064-4070. doi:10.1021/la063243z
[45] C. D. Chen, Y. T. Yeh and C. R. Wang, “The Fabrication and Photo-Induced Melting of Networked Gold Nanostructures and Twisted Gold Nanorods,” Journal of Physics and Chemistry of Solids, Vol. 62, No. 9-10, 2001, pp. 1587-1597. doi:10.1016/S0022-3697(01)00098-1
[46] L. Pei, K. Mori and M. Adachi, “Formation Process of Two-Dimensional Networked Gold Nanowires by Citrate Reduction of AuCl4 ̄ and the Shape Stabilization,” Langmuir, Vol. 20, No. 18, 2004, pp. 7837-7843. doi:10.1021/la049262v
[47] S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” Journal of Physical Chemistry B, Vol. 103, No. 40, 1999, pp. 8410-8426. doi:10.1021/jp9917648
[48] B. K. Pong, H. I. Elim, J. X. Chong, B. L. Trout and J. Y. Lee, “New Insights on the Nanoparticle Growth Mechanism in the Citrate Reduction of Gold (III) Salt: Formation of the Au Nanowire Intermediate and Its Nonlinear Optical Properties,” Journal of Physical Chemistry C, Vol. 111, No. 17, 2007, pp. 6281-6287. doi:10.1021/jp068666o

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.