Flow-Injection Flame Atomic Absorption Determination of Hexavalent Chromium with On-Line Preconcentration on an Anion Imprinted Polymer

DOI: 10.4236/ajac.2012.311100   PDF   HTML     3,430 Downloads   5,440 Views   Citations


A flow injection preconcentration system for the flame atomic absorption spectrometric determination of hexavalent chromium has been developed. The method employs on-line preconcentration of Cr(VI) on a minicolumn packed with Cr(VI)-imprinted poly(4-vinyl pyridineco-2-hydroxyethyl methacrylate) placed into a flow injection system. Hexava-lent chromium was eluted with a small volume of diluted hydrochloric acid into the nebulizer-burner system of a flame atomic absorption spectrometer. An enrichment factor of 550 and a 3σ detection limit of 0.04 μg·L-1 along a sampling frequency of 4 h-1 at a sample flow rate of 3.5 mL·min-1. The relative standard deviation is 2.9% for 1 μg·L-1 Cr(VI) (n = 11). The flow injection system proposed has the advantage of being simpler because the use of expensive and sophisticated instruments is avoided. Ease of use, continuous process and selectivity make this method suitable for Cr(VI) determination in different environmental samples such as sea and river waters, soils and sediments.

Share and Cite:

M. Yebra-Biurrun, J. Castro-Romero and N. Carro-Mariño, "Flow-Injection Flame Atomic Absorption Determination of Hexavalent Chromium with On-Line Preconcentration on an Anion Imprinted Polymer," American Journal of Analytical Chemistry, Vol. 3 No. 11, 2012, pp. 755-760. doi: 10.4236/ajac.2012.311100.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. E. Hester and R. M. Harrison, “Electronic Waste Management,” Royal Society of Chemistry, Cambridge, 2009.
[2] A. Basu and T. M. Johnson, “Determination of Hexavalent Chromium Reduction Using Cr Stable Isotopes: Isotopic Fractionation Factors for Permeable Reactive Barrier Materials,” Environmental Science & Technology, Vol. 46, No. 10, 2012, pp. 5353-5360. doi:10.1021/es204086y
[3] B. Yaron, I. Dror and B. Berko-witz, “Soil-Subsurface Change: Chemical Pollutant Impacts,” Springer-Verlag, Berlin, 2012.
[4] M. Payehghadr, S. Esmaeilpour, M. K. Rofouei, and L. Adlnasab, “Determination of Trace Amount of Cadmium by Atomic Absorption Spectrometry in Table Salt after Solid Phase Preconcentration Using Octadecyl Silica Membrane Disk Modified by a New Derivative of Pyridine,” Journal of Chemistry, Vol. 2013, 2013. doi:10.1155/2013/417085
[5] E. Pehlivan and S. Cetin, “Sorption of Cr(VI) Ions on Two Lewatit-Anion Exchange Resins and Their Quantitative Determination Using UV-Visible Spectrophotometer,” Journal of Hazardous Materials, Vol. 163, No. 1, 2009, pp. 448-453. doi:10.1016/j.jhazmat.2008.06.115
[6] M. M. López Guerrero, E. Vereda Alonso, J. M. Cano Pavón, M. T. Siles Cordero and A. García de Torres, “On-Line Preconcentration Using Chelating and Ion-Exchange Minicolumns for the Speciation of Chromium(III) and Chromium(VI) and Their Quantitative Determination in Natural Waters by Inductively Coupled Plasma Mass Spectrometry,” Journal of Analytical Atomic Spectrometry, Vol. 27, No. 4, 2012, pp. 682-688. doi:10.1039/C2JA10290K
[7] M.J. Marqués, A. Morales-Rubio, A. Salvador and M. de la Guardia, “Chromium Speciation Using Activated Alumina Microcolumns and Sequential Injection Analysis-flame Atomic Absorption Spectrometry,” Talanta, Vol. 53, No. 6, 2001, pp. 1229-1239. doi:10.1016/S0039-9140(00)00616-0
[8] A. Tun?eli and A. R. Türker, “Speciation of Cr(III) and Cr(VI) in Water After Preconcentration of its 1,5-Diphenylcarbazone Complex on Amberlite XAD-16 Resin and Determination by FAAS,” Talanta, Vol. 57, No. 6, 2002, pp. 1199-1204. doi:10.1016/S0039-9140(02)00237-0
[9] A. C. Sahayam, “Speciation of Cr(III) and Cr(VI) in Potable Waters by Using Activated Neutral Alumina as Collector and ET-AAS for Determination,” Analytical and Bioanalytical Chemistry, Vol. 372, No. 7, 2002, pp. 840- 842. doi:10.1007/s00216-002-1261-7
[10] S. Kartal, S? Tokalloglu , and B . ?zkan, “Speciation of Cr(III)/Cr(VI) in Tannery Waste Waters by Using Ion- Exchange Resins,” Bulletin of the Korean Chemical Society, Vol. 27, No. 5, 2003, pp. 694-698. doi:10.5012/bkcs.2006.27.5.694
[11] I. Narin, A. Kars and M. Soylak, “A Novel Solid Phase Extraction Procedure on Amberlite XAD-1180 for Speciation of Cr(III), Cr(VI) and Total Chromium in Environmental and Pharmaceutical Samples,” Journal of Hazardous Materials, Vol. 150, No 2, 2008, pp. 453-458. doi:10.1016/j.jhazmat.2007.04.125
[12] M. E. Mahmoud, A. A. Yakout, S. B. Ahmed and M. M. Osman, “Speciation, Selective Extraction and Preconcentration of Chromium Ions Via Alu-mina-Functionalized- Isatin-Thiosemicarbazone,” Journal of Hazardous Materials, Vol. 158, No. 2-3, 2008, pp. 541-548. doi:10.1016/j.jhazmat.2008.01.114
[13] Z. Wang, D. M. Fang, Q. Li, L. X. Zhang, R. Qian, Y. Zhu, H. Y. Qu and Y. P. Du, “Modified Mesoporous Silica Materials for On-Line Separation and Preconcentration of Hexavalent Chromium Using a Microcolumn Coupled with Flame Atomic Absorption Spec-trometry,” Analytica Chimica Acta, Vol. 725, No. 6, 2012, pp. 81-86. doi:10.1016/j.aca.2012.03.005
[14] H. M. Marwani, H. M. Albishri, E. M. Soliman and T. A. Jalal, “Selective Adsorption and Determination of Hexavalent Chromium in Water Samples by Chemically Modified Activated Carbon with Tris(hydroxymethyl) ami- nomethane,” Journal of Dispersion Science and Technology, Vol. 33, No. 4, 2012, pp. 549-555. doi:10.1080/01932691.2011.574941
[15] S. Walas, A. Tobiasz, M. Gawin, B. Trzewik, M. Strojny, and H. Mrowiec, “Application of a Metal Ion-Imprinted Polymer Based on Salen-Cu Complex to Flow Injection Preconcentration and FAAS Determination of Copper,” Talanta, Vol. 76, No. 1, 2008, pp. 96-101. doi:10.1016/j.talanta.2008.02.008
[16] M. Saraji and H. Yousefi, “Selective Solid-phase Extraction of Ni(II) by an Ion-Imprinted Polymer from Water Samples,” Journal of Hazardous Materials, Vol. 167, No. 1-3, 2009, pp. 1152-1157. doi:10.1016/j.jhazmat.2009.01.111
[17] Y. K. Tsoi, Y. M. Ho and K. S. Y. Leung, “Selective Recognition of Arsenic by Tai-loring Ion-Imprinted Polymer for ICP-MS Quantification,” Talanta, Vol. 89, No. 30, 2012, pp.162-168. doi:10.1016/j.talanta.2011.12.007
[18] Y. Li, B. Gao and R. Du, “Studies on Preparation and Recognition Characteristic of Surface-Ion Imprinting Material IIP-PEI/SiO2 of Chromate Anion,” Separation Science and Technology, Vol. 46, No. 9, 2011, pp. 1472- 1481. doi:10.1080/01496395.2011.561821
[19] G. Bayramoglu, M. Y. Arica, “Synthesis of Cr(VI)-Imprinted Poly(4-vinyl Pyrdine-co-hydroxyethyl-methacrylate) Particles: Its Adsorption Propensity to Cr(VI),” Journal of Hazardous Materials, Vol. 187, No. 1-3, 2011, pp. 213-221. doi:10.1016/j.jhazmat.2011.01.022
[20] I. Fujiwara, M. Maeda, M. Takagi, “Preparation of Ferro-cyanide-Imprinted Pyri-dine-Carrying Microspheres by Surface Imprinting Polymeriza-tion,” Analytical Sciences, Vol. 19, No. 4, 2003, pp. 617-620. doi:10.2116/analsci.19.617
[21] E. B. ?zkütük, A. Ers?z, A. Denizli and R. Say, “Precon- centration of Phosphate Ion onto Ion-imprinted Polymer”, Journal of Hazardous Materials, Vol. 157, No. 1, 2008, pp. 130-136. doi:10.1016/j.jhazmat.2007.12.118
[22] M. C. Yebra-Biurrun, “Flow Injection Analysis of Marine Samples,” Nova Science Publishers, New York, 2009.
[23] USEPA, “Method 3060A, Alkaline Digestion for Hexavalent Chromium. Tests Methods for Evaluating Solid Waste, Physical/Chemical Methods SW 846,” US Government Printing Office (GPO), Washington DC, 1996.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.