Electrocatalytic and Sensors Properties of Natural Smectite Type Clay towards the Detection of Paraquat Using a Film-Modified Electrode

DOI: 10.4236/ajac.2012.311099   PDF   HTML     3,073 Downloads   4,926 Views   Citations


In this study, a low-cost and sensitive voltammetric method was developed for the determination of paraquat (PQ2+). This was achieved by coating a glassy carbon electrode with a purified fraction of a smectite-type clay, which was then used to accumulate paraquat by an ion exchange process. The electronanalytical procedure involves two steps: the chemical preconcentration of paraquat under open-circuit conditions in an aqueous medium, followed by the voltammetric detection of the preconcentrated pollutant in a medium containing permanganate ions which significantly improved through its catalytic action the electrode response. A systematic study of the experimental conditions (pH of the accumulation and detection media, permanganate concentration in the detection medium, clay content of the coating, potential and duration of the electrolysis step) on the stripping response were examined in detail. After optimization, a linear calibration curve for paraquat was obtained in the concentration range from 1.6 to 2.8 μM, leading to a detection limit of 3.8 × 10–9 mol·L–1 (S/N = 3). The proposed method was successfully applied to the determination of paraquat in spring water.

Share and Cite:

H. Tcheumi, I. Tonle, A. Walcarius and E. Ngameni, "Electrocatalytic and Sensors Properties of Natural Smectite Type Clay towards the Detection of Paraquat Using a Film-Modified Electrode," American Journal of Analytical Chemistry, Vol. 3 No. 11, 2012, pp. 746-754. doi: 10.4236/ajac.2012.311099.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Zwing, “Pesticides, Plant Growth Regulators and Food Additives,” Academic Press, New York, 1967.
[2] K. A Hassal, “The Chemistry of Pesticides. Their Metabolism, Mode of Action and Uses in Crop Protection,” Verlag, Weinheim, 1982.
[3] D. Kaniansky, F. Lvinyi and F. I. Onuska, “On-Line Isotachlophoretic Sample Pretreatment in Ultratrace Determination of Paraquat and Diquat in Water by Capillary Zone Electrophoresis,” Analytical Chemistry, Vol. 66, No. 11, 1994, pp. 1817-1824. doi:10.1021/ac00083a007
[4] C. Tomlin, “The Pesticide Manual: Incorporating the Agro Chemicals Handbook,” 10th Edition, British Crop Protection Council, Cambrige, 1994.
[5] E. Halfon, S. Galassi, R. Bruggemann and A. Provini, “Selection of Priority Properties to Assess En-vironmental hazard of Pesticides,” Chemosphere, Vol. 33, No. 8, 1996, pp .1543-1562.
[6] M. K. Rai, J. V. Das and V. K. Gupta, “A Sensitive Determination of Paraquat by Spectrophotometry,” Talanta, Vol. 45, No. 2, 1997, pp. 343-348. doi:10.1016/S0039-9140(97)00136-7
[7] B. Saad, M. Ariffin and M. I. Saleh, “Flow Injection Potentiometric Determination of Paraquat in Formulation and Biological Samples,” Talanta, Vol. 47, No. 5, 1998, pp 1231-1236. doi:10.1016/S0039-9140(98)00213-6
[8] I. Kambhampati, K. S. Roinestad, T. G. Hartman, J. D. Rosen, E. K. Fukuda, R. L. Lippincott and R. T. Rosen. “Determination of Diquat and Paraquat in Water Using High-Performance Liquid Chromatography with Configuration by Liquid Chromatography Particle Beam Mass Spectrometry,” Journal of Chromatography A, Vol. 688, No. 1-2, 1994, pp. 67-73. doi:10.1016/0021-9673(94)00889-2
[9] M. Sreedilar, T. R. Madhusudana, K. R. Sirista and S. R. Jayarama, “Differential Pulse Adsorptive Stripping Volta- mmetric Determination of Dinoseb and Dinoterb at a Modified Electrode,” Analytical Sciences, Vol. 19, No. 4, 2003, pp. 511-516. doi:10.2116/analsci.19.511
[10] M. Sbai, H. E. Tome, U. Gombert, T. Breton and M. Pontie, “Electrochemical Stripping of Methyl-Parathion Us- ing Carbon Fiber Microelectrodes Modified with Combinations of Poly-NiTSPc and Nafion Films,” Sensor and Actuators B, Vol. 124, No. 2, 2007, pp. 368-375. doi:10.1016/j.snb.2006.12.051
[11] D. De Souza, S. A. S. Machado and R. C. Pires, “Multiple Square Wave Voltammetry for Analytical Determination of Paraquat in Natural Water, Food and Beverages Using Microelectrodes,” Talanta, Vol. 69, No. 5, 2006, pp. 1200- 1207. doi:10.1016/j.talanta.2005.12.045
[12] P. M. S. Monk, C. Turner and S. P. Akhtar, “Electrochemical Behavior of Methyl Viologen in a Matrix of Paper,” Electrochimica Acta, Vol. 44, No. 26, 1999, pp. 4817-4826.
[13] A. Walcarius and L. lamberts, “Square Wave Voltammetric Determination of Paraquat and Diquat in Aqueous Solution,” Journal of Electroanalytical Chemistry, Vol. 406, No. 1, 1996, pp. 59-68. doi:10.1016/0022-0728(95)04385-3
[14] T. H. Lu and I. W. Sun, “Electrocatalytic Determination of Paraquat Using a Nafion Film Coated Glassy Carbon Electrode,” Talanta, Vol. 53, No. 2, 2000, pp. 443-451. doi:10.1016/S0039-9140(00)00511-7
[15] E. Alvarez, M. Teresa Sevilla, J. M. Pinilla and L. Hernandez, “Cathodic Stripping Voltammetry of Paraquat on a Carbon Paste Electrode Modified with Amberlite XAD- 2 Resin,” Analytica Chimica Acta, Vol. 260, No. 1, 1992, pp. 19-23. doi:10.1016/0003-2670(92)80121-M
[16] M. A. Mhammedi, M. Bakasse and A. Chtaini, “Electrochemical Studies and Square Wave Voltammetry of Paraquat at Natural Phosphate Modified Carbon Paste Electrode,” Journal of Hazardous Materials, Vol. 145, No. 1-2, 2007, pp. 1-7. doi:10.1016/j.jhazmat.2007.02.054
[17] B. K. G. Theng, “The Chemistry of Clay-Organic Reactions,” John Wiley & Sons, New York, 1974.
[18] B. A. G. Knigt and T. E. Tomhnson, “The Interaction of Paraquat with Mineral Soils,” Journal of Soil Science, Vol. 18, No. 2, 1967, pp. 233-243. doi:10.1111/j.1365-2389.1967.tb01503.x
[19] B. A. G. Knigt and P. J. Denny, “The Interaction of Para- quat with Soil: Ad-sorption by an Expanding Lattice Clay Mineral,” Weed Research, Vol. 10, No. 1, 1970, pp. 40- 48. doi:10.1111/j.1365-3180.1970.tb00921.x
[20] H. V. Olphen, “An Introduction to Clay Colloid Chemistry,” 2nd Edition, John Wiley & Sons, New York, 1977.
[21] J. J Fripiat, “Internal Surface of Clays and Constrained Chemical Reaction,” Clays and Clay Minerals, Vol. 34, No. 5, 1986, pp. 501-506. doi:10.1346/CCMN.1986.0340501
[22] I. K. Tonle, E. Nga-meni, D. Njopwouo, C. Carteret and A. Walcarius, “Functionalization of Natural Smectite-Type Clays by Grafting with Organosilanes: Physic Chemical Characterization and Application to Mercury(II) Uptake,” Physical Chemistry Chemical Physics, Vol. 5, No. 21, 2003, pp. 4951-4961. doi:10.1039/b308787e
[23] I. K. Tonle, E. Ngameni, H. L. Tcheumi, V. Tchieda, C. Carteret and A. Walcarius, “Sorption of Methylene Blue on an Organoclay Bearing Thiol Groups and Application to Electrochemical Sensing of the Dye,” Talanta, Vol. 74, No. 4, 2008, pp. 489-497. doi:10.1016/j.talanta.2007.06.006
[24] H. L. Tcheumi, I. K. Tonle, E. Ngameni and A. Walcarius, “Electrochemical Analysis of Methylparathion Pesticide by a Gemini Surfactant-Intercalated Clay-Modified Electrode,” Talanta, Vol. 81, No. 3, 2010, pp. 972-979. doi:10.1016/j.talanta.2010.01.049
[25] Y. Xi, Z. Ding, H. He and R. L. Frost, “Infrared Spectroscopy of Organoclays Synthesized with the Surfactant Octadecyltrimethylammonium Bromide,” Spectrochimica Acta A, Vol. 61, No. 3, 2005, pp. 515-525. doi:10.1016/j.saa.2004.05.001
[26] J. D. Russel and A. R. Fraser, “Infrared Methods,” In: M. J. Wilson, Ed., Clay Miner-alogy: Spectroscopy an Chemical Determinative Methods, Chapman & Hall, London, 1994, pp. 11-67. doi:10.1007/978-94-011-0727-3_2
[27] L. Zhou, H. Chen, X. Jiang, F. Lu, Y. Zhou, W. Yin and X. Ji, “Modification of Montmorillonite Surfaces Using a Novel Class of Cationic Gemini Surfactants,” Journal of Colloid and Interface Science, Vol. 332, No. 1, 2009, pp. 16-21. doi:10.1016/j.jcis.2008.12.051
[28] D. Vantelon and E. M. Peller, “Iron Distribution in the Octahedral Sheet sDiactohedral Smectites. An Fe K-Edge X-Ray Absorption Spectroscopy Study,” Physics and Chemistry of Minerals, Vol. 30, No. 1, 2003, pp. 44-53. doi:10.1007/s00269-002-0286-y
[29] V. Ganesan and A. Walcarius, “Surfactant Template Sulfonic Acid Fonctionnalized Silica Microsphere as New Efficient Ion Exchange and Electrode Modifiers,” Langmuir, Vol. 20, No. 9, 2004, pp. 3632-3640. doi:10.1021/la0364082
[30] I. K. Tonle, E. Ngameni and A. Walcarius, “From Clay to Organoclay-Film Modified Electrodes: Tuning Charge Selectivity in Ion Exchange Voltammetry,” Electrochimica Acta, Vol. 49, No. 20, 2004, pp 3435-3443. doi:10.1016/j.electacta.2004.03.012
[31] E. Ngameni, I. K. Tonle, J. T. Apohkeng, R. B. Bouwe, A. T. Jieumboue and A. Walcarius, “Permselective and Preconcentration Properties of a Surfactant-Intercalated Clay Modified Electrode,” Electroanalysis, Vol. 18, No 22, 2006, pp. 2243-2250. doi:10.1002/elan.200603654
[32] D. Ozkan, K. Kerman, B. Meric, P. Kara, H. Demirkan, M. Polverejan, T. J. Pinnavaia and M. Ozsoz, “Heterostructured Fluorohectorite Clay as an Electrochemical Sensor for the Detection of 2,4-Dichlorophenol and the Herbicide 2,4-D,” Chemistry of Materials, Vol. 14, No. 4, 2002, pp. 1755-1761. doi:10.1021/cm011529d
[33] P. Falaras and F. Lezou, “Electrochemical Behavior of Acid Activated Montmorilonite Modified Electrode,” Journal of Electroanaytical Chemistry, Vol. 455, No. 1-2, 1998, pp.169-179. doi:10.1016/S0022-0728(98)00272-1
[34] J. A. Farrington, A. Ledwith, and M. F. Stam, “Cation- Radicals: Oxidation of Methoxide Ion with 1,1’-Dimethyl- 4,4’-bypyridylium Dichloride (Paraquat Dichloride),” Journal of the Chemical Society D: Chemical Communications, Vol. 6, 1969, pp. 259-260.
[35] D. De Souza and S. A. S. Machado, “Electrochemical Detection of the Herbicide Paraquat in Natural Water and Citric Fruit Juices Using Microelectrodes,” Analytica Chimica Acta, Vol. 546, No. 1, 2005, pp. 85-91. doi:10.1016/j.aca.2005.05.020

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.