Biotransformation of endosulfan by the tiger worm, Eisenia fetida

Abstract

This study assesses the role of the earthworm, Eisenia fetida, in the breakdown of endosulfan in a soil environment. Two strains of E. fetida were used in this study to assess the effect of salinity on toxicity and metabolism of endosulfan in these earthworms. One strain of E. fetida (R) was reared in high salinity soil (over 2.0 dS/m of electric conductivity) from Shiwha lake, Korea. A control strain (W) was reared in pig manure compost. Acute toxicity of endosulfan was lower in the R strain when endosulfan was injected. In vitro metabolic studies of endosulfan based on microsomal preparations showed that both strains produced two major metabolites, endosulfan sulfate and endosulfan diol. The production rate of endodulfan sulfate was not significantly different between the strains, while endosulfan diol production was significantly different. In vivo metabolism studies showed only one primary metabolite, endosulfan sulfate, was produced by both strains. HPLC-MS/MS analysis showed annetocin was the indicative protein newly expressed in the R strain in relation to salinity exposure. These findings suggest salinity may induce hydrolyzing enzymes to produce endosulfan diol from endosulfan.

Share and Cite:

B. Park, J. Yoo, J. Kim, J. Kim and S. Lee, "Biotransformation of endosulfan by the tiger worm, Eisenia fetida," Journal of Agricultural Chemistry and Environment, Vol. 1 No. 1, 2012, pp. 20-27. doi: 10.4236/jacen.2012.11004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Fisher, S.W. (1984) A comparison of standardized methods for measuring the biological activity of pesticides to the earthworm, Lubricus terrestris. Ecotoxicology and Environmental Safety, 8, 564-571. doi:10.1016/0147-6513(84)90016-2
[2] Addison, J.A. and Holmes, S.B. (1995) Comparison of forest soil microcosm and acute toxicity studies for determining effects of fenitrothion on earthworms. Ecotoxicology and Environmental Safety, 30, 127-133. doi:10.1006/eesa.1995.1016
[3] Mosleh, Y.Y., Paris-Palacios, S., Couderchet, M. and Vernet, G. (2003) Effects of the herbicide isoproturon on survival, growth rate, and protein content of mature earthworms (Lumbricus terrestris L.) and its fate in the soil. Applied Soil Ecology, 23, 69-77. doi:10.1016/S0929-1393(02)00161-0
[4] OECD (1984) Earthworms acute toxicity tests. In: OECD Guidelines for Testing of Chemicals (TEST 207), Organization for economic co-operation and development (OECD), Paris.
[5] Zhou, S.P., Duan, C.Q., Fu, H., Chen, Y.H., Wang, X.H. and Yu, Z.F. (2007) Toxicity assessment for chlorpyrifos-contaminated soil with three different earthworm test methods. Journal of Environmental Sciences, 19, 854-858. doi:10.1016/S1001-0742(07)60142-9
[6] Chang, L.W., Meier, J.R. and Smith, M.K. (1997) Application of plant and earthworm bioassays to evaluate remediation of a lead-contaminated soil. Archives of Environmental Contamination and Toxicology, 32, 166-171. doi:10.1007/s002449900170
[7] Bundy, J.G., Lenz, E.M., Osborn, D., Weeks, J.M., Lindon, J.C. and Nicholson, J.K. (2002) Metabolism of 4- fluoroaniline and 4-fluorobiphenyl in the earthworm Eisenia veneta characterized by high-resolution NMR spectroscopy with directly coupled HPLC-NMR and HPLC-MS. Xenobiotica, 32, 479-490. doi:10.1080/00498250210124156
[8] Albro, P.W., Corbett, J.T. and Schroeder, J.L. (1993) The metabolism of di(2-ethylhexyl)phthalate in the earthworm Lubricus terrestris. Comparative Biochemistry and Physiology C, 104, 335-344.
[9] Gupta, P.K. and Gupta, R.C. (1979) Pharmacology, toxicology and degradation of endosulfan: A review. Toxicology, 13, 115-130.
[10] Katayama, A. and Matsumura, F. (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environmental Toxicology and Chemistry, 12, 1059-1065.
[11] Kullman, S.W. and Matsumura, F. (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Applied and Environmental Microbiology, 62, 593-600.
[12] Shetty, P.K., Mitra, J., Murthy, N.B.K., Namitha, K.K., Savita, K.N. and Raghu, K. (2000) Biodegradation of cyclodiene insecticide endosulfan by Mucor thermo-hyalospora MTCC 1384. Current Science, 79, 1381-1383.
[13] Kim, Y.K., Kim, S.H. and Choi, S.C. (2001) Kinetics of endosulfan degradation by Phanerochaete chrysosporium. Biotechnology Letters, 23, 163-166. doi:10.1023/A:1010308332581
[14] Lee, S.E., Kim, J.S., Kennedy, I.R., Park, J.W., Kwon, G.S., Koh, S.C. and Kim, J.E. (2003) Biotransformation of an organochlorine insecticide, endosulfan, by Anabaena species. Journal of Agricultural Food and Chemistry, 51, 1336-1340. doi:10.1021/jf0257289
[15] Finney, D.J. (1971) Probit analysis. 3rd Edition, Cambridge University, London.
[16] Karnak, R.E. and Hamelink, J.L. (1982) A standardized method for determining the acute toxicity of chemicals to earthworms. Ecotoxicology and Environmental Safety, 6, 216-222. doi:10.1016/0147-6513(82)90012-4
[17] Son, J., Lee, S.E., Park, B.S., Jung, J., Park, H.S., Bang, J.Y., Kang, G.Y. and Cho, K. (2011) Biomarker discovery and proteomic evaluation of cadmium toxicity on a collembolan species, Paronychiurus kimi (Lee). Proteomics, 11, 2294-2307. doi:10.1002/pmic.200900690
[18] Lee, S.E., Yoo, D.H., Son, J. and Cho, K. (2006) Proteomic evaluation of cadmium toxicity on the midge Chironomus riparius Meigen larvae. Proteomics, 6, 945-957. doi:10.1002/pmic.200401349
[19] Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3
[20] SAS (1995) SAS user’s guide: Statistics. SAS Institute: Cary.
[21] Mosleh, Y.Y., Paris-Palacios, S., Couderchet, M. and Vernet, G. (2003) Acute and sublethal effects of two insecticides on earthworms (Lumbricus terrestris L.) under laboratory conditions. Environmental Toxicology, 18, 1-8. doi:10.1002/tox.10095
[22] El-Alfy, A.T., Bernache, E. and Schlenk, D. (2002) Gender differences in the effect of salinity on aldicarb uptake, elimination, and in vitro metabolism in Japanese medaka, Oryzias latipes. Aquatic Toxicology, 61, 225-232. doi:10.1016/S0166-445X(02)00059-0
[23] El-Alfy, A.T. and Schlenk, D. (1998) Potential mechanisms of the enhancement of aldicarb toxicity to Japanese medaka, Oryzias latipes, at high salinity. Toxicology and Applied Pharmacology, 152, 175-183. doi:10.1006/taap.1998.8479
[24] Stegeman, J.J. and Hahn, M. (1994) Biochemistry and molecular biology of monooxygenase: Current perspectives on forms, functions and regulation of cytochrome P450 in aquatic species. In: Malin, D and Ostrander, G. Eds., Aquatic Toxicology: Molecular, Biochemical, and Cellular Perspetives, Boca Raton, 87-204.
[25] Jager, T., Fleuren, R.H., Hogendoorn, E.A. and De Korte, G. (2003) Elucidating the routes of exposure for organic chemicals in the earthworm, Eisenia andrei (Oligochaeta). Environmental Science and Technology, 37, 3399-3404. doi:10.1021/es0340578
[26] Stenerson, J. (1979) Action of pesticides on earthworms. Part I. The toxicity of cholinesterase inhibiting insecticdes to earthworms as evaluated by laboratory tests. Pesticide Science, 10, 66-74. doi:10.1002/ps.2780100109
[27] Stenerson, J. and ?ien, N. (1980) Action of pesticides on earthworms. Part IV. Uptake and elimination of oxamyl compared with carbofuran. Pesticide Science, 11, 396-400. doi:10.1002/ps.2780110405
[28] Lord, K.A., Briggs, G.G., Neale, M.C. and Manlove, R. (1980) Uptake of pesticides from water and soil by earthworms. Pesticide Science, 11, 401-408. doi:10.1002/ps.2780110406
[29] Hazel, J.R. and Williams, E.E. (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Progress in Lipid Research, 29, 167-227. doi:10.1016/0163-7827(90)90002-3
[30] Guerin, T.F. and Kennedy, I.R. (1992) Distribution and dissipation of endosulfan and related cyclodienes in sterile aqueous systems: implications for studies on biodegradation. Journal of Agricultural Food and Chemistry, 40, 2315-2323. doi:10.1021/jf00023a052
[31] Martens, R. (1977) Degradation of [8,9-14C]endosulfan by soil microorganisms. Applied and Environmental Microbiology, 31, 853-858.
[32] Guerin, T.F. (1999) The anaerobic degradation of endosulfan by indigenous microorganisms from low-oxygen soils and sediments. Environmental Pollution, 106, 13-21. doi:10.1016/S0269-7491(99)00067-6
[33] Sutherland, T.D., Horne, I., Lacey, M.J., Harcourt, R.L., Russell, R.J. and Oakeshott, J.G. (2000) Enrichment of an endosulfan degrading mixed bacterial culture. Applied and Environmental Microbiology, 66, 2822-2828. doi:10.1128/AEM.66.7.2822-2828.2000
[34] Lefebvre C. and Salzet M. (2003) Annelid neuroimmune system. Current Pharmaceutical Design, 8, 99-110.
[35] Fewou, J. and Dhainaut-Courtois, N. (1995) Research on polychaete annelid osmoregulatory peptide(s) by immunocytochemical and physiological approaches. Computer reconstruction of the brain and evidence for a role of angiotensin-like molecules in Nereis (Hediste) diversicolor of muller. Biology of the Cell, 85, 21-33.
[36] Satake, H., Takuwa, K., Minakata, H. and Matsushima, O. (1999) Evidence for conservation of the vasopressin/oxytocin superfamily in Annelida. Journal of Biological Chemistry, 274, 5605-5611. doi:10.1074/jbc.274.9.5605
[37] Fujino, Y., Nagahama, T., Oumi, T., Ukena, K., Morishita, F., Furukawa, Y., Matsushima, O., Ando, M., Takahama, H., Satake, H., Minakata, H. and Nomoto, K. (1999) Possible functions of oxytocin/vasopressin-superfamily peptides in annelids with special reference to reproduction and osmoregulation. Journal of Experimental Zoology, 284, 401-406. doi:10.1002/(SICI)1097-010X(19990901)284:4<401::AID-JEZ6>3.0.CO;2-U
[38] Oumi, T., Ukena, K., Matsushima, O., Ikeda, T., Fujita, T., Minakata, H. and Nomoto, K. (1994) Annetocin: An oxytocin-related peptide isolated from the earthworm, Eisenia foetida. Biochemical Biophysiscal Research Communication, 198, 393-399. doi:10.1006/bbrc.1994.1055

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.