Study of the EMC Effect for 27Al, 56Fe, 63Cu, and 107Ag Nuclei


In this paper the EMC effect for 27Al, 56Fe, 63Cu, and 107Ag nuclei are investigated with oscillator model. In this model has been assumed that nucleons in each level are affected by different mean field, so we use parameter having relation with radius of each level. Therefore; this assumption causes that extracted data for average binding energy =-22.48MeV, =-23.79MeV, =-29.56MeV, and =-31.25MeVare considered for 27Al, 56Fe, 63Cu, and 107Ag nuclei, respectively. Achieving results have agreement with experimental data.

Share and Cite:

N. Nikkhoo and F. Zolfagharpour, "Study of the EMC Effect for 27Al, 56Fe, 63Cu, and 107Ag Nuclei," Journal of Modern Physics, Vol. 3 No. 11, 2012, pp. 1830-1834. doi: 10.4236/jmp.2012.311228.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. J. Aubert, G. Bassompierr, K. H. Becks, C. Best, E. Bohm, X. de Bouard, F. W. Brasse, et al., “The Ratio of the Nucleon Structure Functions F2N for Iron and Deuterium,” Physics Letters B, Vol. 123, No. 3-4, 1983, pp. 275-277. doi:10.1016/0370-2693(83)90437-9
[2] S. V. Akulinichev, S. Shlomo, S. A. Kulagin and G. M. Vagradov, “Lepton-Nucleus Deep-Inelastic Scattering,” Physical Review Letter, Vol. 55 No. 21, 1985, pp. 2239-2241. doi:10.1103/PhysRevLett.55.2239
[3] G. V. Dunne and A. W. Thomas, “Deep Inelastic Scattering as a Probe of Nucleon and Nuclear Structure,” Nuclear Physics A, Vol. 446, No. 1-2, 1985, pp. 437-443. doi:10.1016/0375-9474(85)90617-7
[4] D. F. Geesaman, K. Saito and A. W. Thomas, “The Nuclear EMC Effect,” Annual Review Nuclear Particle Science, Vol. 45, No. 1, 1995, pp. 337-390. doi:10.1146/annurev.ns.45.120195.002005
[5] A. Preston and R. K. Bhaduri, “Structure of Nucleus,” 1st Edition, Addison-Wesley Publishing Company, Boston, 1982.
[6] M. Gluck, E. Reya and A. Vogt, “Dynamical Parton Distributions of Parton and Small-x Physics,” Zeitschrift fur Physik C, Vol. 67, No. 3, 1995, pp. 433-447. doi:10.1007/BF01624586
[7] R. C. Barratt and D. F. Jackson, “Nuclear Sizes and Structure,” Oxford University Press, Oxford, 1977.
[8] F. Zolfagharpour, “EMC effect with different oscillator-model parameters for different shells by considering difference between proton and neutron structure functions,” 2008.
[10] J. Gomez, R. G. Arnold, P. E. Bosted, C. C. Chang, A. T. Katramatou, G. G. Petratos, et al., “Measurement of the A Dependence of Deep-Inelastic Electron Scattering,” Physical Review D, Vol. 49, No. 9, 1994, pp. 4348-4372. doi:10.1103/PhysRevD.49.4348
[11] B. L. Birbrair, M. G. Ryskin and V. I. Ryazanov, “Contribution of Boundness and Motion of Nucleus to the EMC Effect,” The European Physical Journal A, Vol. 25, No. 9, 2005, pp. 275-282. doi:10.1140/epja/i2005-10107-2
[12] T. Uchiyama and K. Saito, “European Muon Collaboration Effect in Deuteron and in Three-Body Nuclei,” Physical Review C, Vol. 38, No. 5, 1988, pp. 2245-2250. doi:10.1103/PhysRevC.38.2245
[13] E. L. Berger and F. Coester, “Nuclear Effects in Deep-Inelastic Lepton Scattering,” Physical Review D, Vol. 38, No. 5, 1985, pp. 1071-1083. doi:10.1103/PhysRevD.32.1071
[14] G. Cattapan and L. Ferreira, “The Role of the △ in Nuclear Physics,” Physics Report, Vol. 362, No. 5-6, 2002, pp. 303-407. doi:10.1016/S0370-1573(01)00093-X
[15] P. Hoodbhoy and R. L. Jaffe, “Quark Exchange in Nuclei and the European Muon Collaboration Effect,” Physical Review D, Vol. 35, No. 1, 1987, pp. 113-121. doi:10.1103/PhysRevD.35.113

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.