On Supersymmetry of the Covariant 3-Algebra Model for M-Theory

DOI: 10.4236/jmp.2012.311226   PDF   HTML   XML   4,864 Downloads   6,402 Views   Citations


We examine a natural supersymmetric extension of the bosonic covariant 3-algebra model for M-theory proposed in [1]. It possesses manifest SO(1,10) symmetry and is constructed based on the Lorentzian Lie 3-algebra associated with the U(N) Lie algebra. There is no ghost related to the Lorentzian signature in this model. It is invariant under 64 supersymmetry transformations although the supersymmetry algebra does not close. From the model, we derive the BFSS matrix theory and the IIB matrix model in a large N limit by taking appropriate vacua.

Share and Cite:

M. Sato, "On Supersymmetry of the Covariant 3-Algebra Model for M-Theory," Journal of Modern Physics, Vol. 3 No. 11, 2012, pp. 1813-1818. doi: 10.4236/jmp.2012.311226.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Sato, “Covariant Formulation of M-Theory,” International Journal of Modern Physics A, Vol. 24, No. 27, 2009, pp. 5019-5024. doi:10.1142/S0217751X09047661
[2] T. Banks, W. Fischler, S. H. Shenker and L. Susskind, “M Theory as a Matrix Model: A Conjecture,” Physical Review D, Vol. 55, No. 8, 1997, p. 5112-5128. doi:10.1103/PhysRevD.55.5112
[3] V. T. Filippov, “N-Lie Algebras,” Sbornik: Mathematics, Vol. 26, No. 6, 1985, pp. 126-140.
[4] N. Kamiya, “A Structure Theory of Freudenthal-Kantor Triple Systems,” Journal of Algebra, Vol. 110, No. 1, 1987, pp. 108-123. doi:10.1016/0021-8693(87)90038-X
[5] S. Okubo and N. Kamiya “Quasi-Classical Lie Superalgebras and Lie Supertriple Systems,” Communications in Algebra, Vol. 30, No. 8, 2002, pp. 3825-3850.
[6] J. Bagger and N. Lambert, “Modeling Multiple M2’s,” Physical Review D, Vol. 75, 2007, Article ID: 045020, p 7. doi:10.1103/PhysRevD.75.045020
[7] A. Gustavsson, “Algebraic Structures on Parallel M2-Bra- nes,” Nuclear Physics B, Vol. 811, No. 1-2, 2009, pp. 66-76. doi:10.1016/j.nuclphysb.2008.11.014
[8] J. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry of Multiple M2-Branes,” Physical Review D, Vol. 77, No. 6, 2008, Article ID: 065008, p 6. doi:10.1103/PhysRevD.77.065008
[9] S. Mukhi and C. Papageorgakis, “M2 to D2,” Journal of High Energy Physics, Vol. 0805, 2008, p. 085.
[10] J. Gomis, G. Milanesi and J. G. Russo, “Bagger-Lambert Theory for General Lie Algebras,” Journal of High Energy Physics, Vol. 0806, 2008, p. 075.
[11] S. Benvenuti, D. Rodriguez-Gomez, E. Tonni and H. Verlinde, “N=8 Superconformal Gauge Theories and M2 Branes,” Journal of High Energy Physics, Vol. 0901, 2009, p. 078.
[12] P.-M. Ho, Y. Imamura and Y. Matsuo, “M2 to D2 Revisited,” Journal of High Energy Physics, Vol. 0807, 2008, p. 003.
[13] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “N=6 Superconformal Chern-Simons-Matter Theories, M2-Branes and Their Gravity Duals,” Journal of High Energy Physics, Vol. 0810, 2008, p. 091.
[14] J. Bagger and N. Lambert, “Three-Algebras and N=6 Chern-Simons Gauge Theories,” Physical Review D, Vol. 79, No. 2, 2009, Article ID: 025002, p 8. doi:10.1103/PhysRevD.79.025002
[15] Y. Nambu, “Generalized Hamiltonian dynamics,” Physical Review D, Vol. 7, No. 8, 1973, pp. 2405-2412. doi:10.1103/PhysRevD.7.2405
[16] H. Awata, M. Li, D. Minic and T. Yoneya, “On the Quantization of Nambu Brackets,” Journal of High Energy Physics, Vol. 0102, 2001, 013. doi:10.1088/1126-6708/2001/02/013
[17] D. Minic, “M-Theory and Deformation Quantization,” 2007. arXiv:hep-th/9909022
[18] J. Figueroa-O’Farrill and G. Papadopoulos, “Pluecker-type Relations for Orthogonal Planes,” Journal of Geometry and Physics, Vol. 49, No. 3-4, 2004, pp. 294-331. doi:10.1016/S0393-0440(03)00093-7
[19] G. Papadopoulos, “M2-Branes, 3-Lie Algebras and Plucker Relations,” Journal of High Energy Physics, Vol. 0805, 2008, pp. 054. doi:10.1088/1126-6708/2008/05/054
[20] J. P. Gauntlett and J. B. Gutowski, “Constraining Maximally Supersymmetric Membrane Actions,” Journal of High Energy Physics, Vol. 0806, 2008, p. 053. doi:10.1088/1126-6708/2008/06/053
[21] D. Gaiotto and E. Witten, “Janus Configurations, Chern-Simons Couplings, and the Theta-Angle in N=4 Super Yang-Mills Theory,” 2010. arXiv:0804.2907[hep-th]
[22] Y. Honma, S. Iso, Y. Sumitomo and S. Zhang, “Janus Field Theories from Multiple M2 Branes,” Physical Review D, Vol. 78, No. 7, 2008, Article ID: 025027, p 7. doi:10.1103/PhysRevD.78.025027
[23] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, “N=5,6 Superconformal Chern-Simons Theories and M2-Branes on Orbifolds,” Journal of High Energy Physics, Vol. 0809, 2008, p. 002. doi:10.1088/1126-6708/2008/09/002
[24] M. Schnabl and Y. Tachikawa, “Classification of N=6 Superconformal Theories of ABJM Type,” 2008. arXiv:0807.1102[hep-th]
[25] M. A. Bandres, A. E. Lipstein and J. H. Schwarz, “Ghost-Free Superconformal Action for Multiple M2-Branes,” Journal of High Energy Physics, Vol. 0807, 2008, p. 117. doi:10.1088/1126-6708/2008/07/117
[26] P. de Medeiros, J. Figueroa-O’Farrill, E. Me’ndez-Escobar and P. Ritter, “On the Lie-Algebraic Origin of Metric 3-Algebras,” Communications in Mathematical Physics, Vol. 290, No. 3, 2009, pp. 871-902. doi:10.1007/s00220-009-0760-1
[27] S. A. Cherkis, V. Dotsenko and C. Saeman, “On Superspace Actions for Multiple M2-Branes, Metric 3-Algebras and Their Classification,” Physical Review D, Vol. 79, No. 8, 2009, Article ID: 086002, p 11. doi:10.1103/PhysRevD.79.086002
[28] P.-M. Ho, Y. Matsuo amd S. Shiba, “Lorentzian Lie (3-) Algebra and Toroidal Compactification of M/String Theory,” 2003. arXiv:0901.2003 [hep-th]
[29] K. Lee and J. Park, “Three-Algebra for Supermembrane and Two-Algebra for Superstring,” 2009. arXiv:0902.2417 [hep-th]
[30] P. de Medeiros, J. Figueroa-O’Farrill, E. Mendez-Escobar and P. Ritter, “Metric 3-Lie Algebras for Unitary Bagger-Lambert Theories,” Journal of High Energy Physics, Vol. 0904, 2009, p. 037.
[31] C. Castro, “On n-Ary Algebras, Branes and Polyvector Gauge Theories in Noncommutative Clifford spaces,” Journal of Physics A, Vol. 43, No. 36, 2010, Article ID: 365201. doi:10.1088/1751-8113/43/36/365201
[32] L. Smolin, “M Theory as a Matrix Extension of Chern-Simons Theory,” Nuclear Physics B, Vol. 591, No. 1, 2000, pp. 227-242. doi:10.1016/S0550-3213(00)00564-2
[33] L. Smolin, “The Cubic Matrix Model and a Duality between Strings and Loops,” 2000. hep-th/0006137
[34] T. Azuma, S. Iso, H. Kawai and Y. Ohwashi, “Supermatrix Models,” Nuclear Physics B, Vol. 610, No. 1, 2001, pp. 251-279. doi:10.1016/S0550-3213(01)00324-8
[35] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, “A Large-N Reduced Model as Superstring,” Nuclear Physics B, Vol. 498, No. 1, 1997, pp. 467-491. doi:10.1016/S0550-3213(97)00290-3
[36] B. de Wit, J. Hoppe and H. Nicolai, “On the Quantum Mechanics of Supermembranes,” Nuclear Physics B, Vol. 305, No. 4, 1988, pp. 545-581. doi:10.1016/0550-3213(88)90116-2
[37] B. Ezhuthachan, S. Mukhi and C. Papageorgakis, “D2 to D2,” Journal of High Energy Physics, Vol. 0807, 2008, p. 041.
[38] H. Singh, “SU(N) Membrane B^F Theory with Dual-Pairs,” 2008. arXiv:0811.1690 [hep-th]
[39] K. Furuuchi and D. Tomino, “Supersymmetric Reduced Models with a Symmetry Based on Filippov Algebra,” Journal of High Energy Physics, Vol. 0905, 2009, p. 070. doi:10.1088/1126-6708/2009/05/070
[40] H. Kawai and M. Sato, “Perturbative Vacua from IIB Matrix Model,” Physics Letters B, Vol. 659, No. 3, 2008, pp. 712-717. doi:10.1016/j.physletb.2007.11.021
[41] T. Eguchi and H. Kawai, “Reduction of Dynamical Degrees of Freedom in the Large N Gauge Theory,” Physical Review Letters, Vol. 48, No. 16, 1982, pp. 1063-1066. doi:10.1103/PhysRevLett.48.1063
[42] G. Parisi, “A Simple Expression for Planar Field Theories,” Physics Letters B, Vol. 112, No. 6, 1982, pp. 463- 464. doi:10.1016/0370-2693(82)90849-8
[43] G. Bhanot, U. M. Heller and H. Neuberger, “The Quenched Eguchi-Kawai Model,” Physics Letters B, Vol. 113, No. 1, 1982, pp. 47-50. doi:10.1016/0370-2693(82)90106-X
[44] D. J. Gross and Y. Kitazawa, “A Quenched Momentum Prescription for Large N Theories,” Nuclear Physics B, Vol. 206, No. 3, 1982, pp. 440-472. doi:10.1016/0550-3213(82)90278-4
[45] L. Motl, “Proposals on Nonperturbative Superstring Interactions,” 1997. hep-th/9701025
[46] T. Banks and N. Seiberg, “Strings from Matrices,” Nuclear Physics B, Vol. 497, No. 1, 1997, pp. 41-55. doi:10.1016/S0550-3213(97)00278-2
[47] R. Dijkgraaf, E. Verlinde and H. Verlinde, “Matrix String Theory,” Nuclear Physics B, Vol. 500, No. 1, 1997, pp. 43-61. doi:10.1016/S0550-3213(97)00326-X
[48] J. M. Maldacena, “The Large N Limit of Superconformal Field Theories and Supergravity,” Advances in Theoretical and Mathematical Physics, Vol. 2, No. 2, pp. 231- 252.
[49] M. Sato, “Model of M-theory with Eleven Matrices,” Journal of High Energy Physics, Vol. 1007, 2010, p. 026. doi:10.1007/JHEP07(2010)026
[50] M. Sato, “Supersymmetry and the Discrete Light-Cone Quantization Limit of the Lie 3-Algebra Model of M-Theory,” Physical Review D, Vol. 85, No. 4, 2012, Article ID: 046003, p 6. doi:10.1103/PhysRevD.85.046003
[51] M. Sato, “Zariski Quantization as Second Quantization,” Physical Review D, Vol. 85, No. 12, 2012, Article ID: 126012, p 10. doi:10.1103/PhysRevD.85.126012

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.