Stabilization of Unknown Nonlinear Discrete-Time Delay Systems Based on Neural Network

DOI: 10.4236/ica.2012.34039   PDF   HTML     4,006 Downloads   5,625 Views   Citations

Abstract

This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is presented for approximating the system nonlinearity. Using appropriate Lyapunov-Krasovskii functional the stability of the nonlinear system is ensured by the solution of linear matrix inequalities. Finally, a relevant example is given to illustrate the effectiveness of the proposed control scheme.

Share and Cite:

V. Deolia, S. Purwar and T. Sharma, "Stabilization of Unknown Nonlinear Discrete-Time Delay Systems Based on Neural Network," Intelligent Control and Automation, Vol. 3 No. 4, 2012, pp. 337-345. doi: 10.4236/ica.2012.34039.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Basin, J. Perez and R. Martinenz-Zuniga, “Optimal Filtering for Nonlinear Polynomial Systems over Linear Observations with Delay,” International Journal of Innovative Computing Information and Control, Vol. 2, 2006, pp. 863-874.
[2] J. Chen, D. M. Xu and B. Shafai, “On Sufficient Conditions for Stability Independent of Delay,” IEEE Transactions on Automatic Control, Vol. 40, No. 9, 1995, pp. 1675-1680. doi:10.1109/9.412644
[3] E. Fridman and U. Shaked, “Stability and Guaranteed Cost Control of Uncertain Discrete-Delay Systems,” International Journal of Control, Vol. 78, No. 4, 2005, pp. 235-246. doi:10.1080/00207170500041472
[4] C. Lin, Q.-G. Wang and T. H. Lee, “A Less Conservative Robust Stability Test for Linear Uncertain Time-Delay Systems,” IEEE Transactions on Automatic Control, Vol. 51, No. 1, 2006, pp. 87-91. doi:10.1109/TAC.2005.861720
[5] Z. Wang, B. Huang and H. Unbehauen, “Robust Hx Observer Design of Linear State Delayed Systems with Parameteric Uncertainty: The Discrete-Time Case,” Automatica, Vol. 35, 1999, pp. 1161-1167 doi:10.1016/S0005-1098(99)00008-4
[6] Y. He, Q. G. Wang, C. Lin and M. Wu, “Delay-RangeDependent Stability for Systems with Time Varying Delay,” Automatica, Vol. 43, No. 2, 2007, pp. 371-376. doi:10.1016/j.automatica.2006.08.015
[7] X. Li and C. de Sauza, “Criteria for Robust Stability and Stabilization of Uncertain Linear Systems with State Delay,” Automatica, Vol. 33, 1997, pp. 1697-1662. doi:10.1016/S0005-1098(97)00082-4
[8] V. Kolmanvoskii and J.-P. Richard, “Stability of Some Linear Systems with Delays,” IEEE Transactions on Automatic Control, Vol. 44, 1999, pp. 984-989. doi:10.1109/9.763213
[9] E. Fridman, “New Lyapunov-Krasovskii Functional for Stability of Linear Retarted and Neutral Type Systems,” Systems and Control Letters, Vol. 43, 2001, pp. 309-319. doi:10.1016/S0167-6911(01)00114-1
[10] S.-I. Niculescu, “Delay Effects on Stability: A Robust Control Approach,” Lecture Notes in Control and Information Sciences, Vol. 269, Springer-Verlag, London, 2001.
[11] E. Fridman and U. Shaked, “An Improved Stabilization Method for Linear Systems with Time-Delay,” IEEE Transactions on Automation Control, Vol. 47, 2002, pp. 1931-1937. doi:10.1109/TAC.2002.804462
[12] E. Fridman, “Stability of Linear Functional Differential Equations: A New Lyapunov Technique,” Proceedings of Mathematical Theory of Networks and Systems, Leuven, 5-9 July 2004.
[13] K. J. Astrom and B. Wittenmark, “Computer Controlled Systems: Theory and Design,” Prentice-Hall Inc., Englewood Cliffs, 1984.
[14] E. Fridman and U. Shaked, “An LMI Approach to Stability of Discrete Delay Systems,” Proceedings of 7th IEE European Control Conference, Cambridge, 2003.
[15] Y. S. Lee and W. H. Kwon, “Delay Dependent Robust Stabilization of Uncertain Discrete-Time State-Delayed Systems,” 15th Triennial World Congress, Barcelona, 2002.
[16] S. S. Ge, F. Hong and T. H. Lee, “Adaptive Neural Network Control of Nonlinear Systems with Unknown Time Delays,” IEEE Transactions on Automatic Control, Vol. 48, No. 11, 2003, pp. 2004-2010. doi:10.1109/TAC.2003.819287
[17] S. S. Ge, F. Hong and T. H. Lee, “Adaptive Neural Control of Nonlinear Time-Delay Systems with Unknown Virtual Control Coefficients,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 34, No. 1, 2004, pp. 499-516. doi:10.1109/TSMCB.2003.817055
[18] D. W. C. Ho, J. Li and Y. Niu, “Adaptive Neural Control for a Class of Nonlinearly Parametric Time-Delay Systems,” IEEE Transactions on Neural Networks, Vol. 16, No. 3, 2005, pp. 625-635. doi:10.1109/TNN.2005.844907
[19] A. Kulkarni and S. Purwar, “Backstepping Control for a Class of Delayed Nonlinear Systems with Input Constraints,” IEEE Conference, Vol. 1, 2008, pp. 274-279.
[20] B. Chen, X. P. Liu, K. F. Liu and C. Lin, “Fuzzy-Approximation-Based Adaptive Control of Strict-Feedback Nonlinear Systems with Time Delays,” IEEE Transactions on Fuzzy Systems, Vol. 18, No. 5, 2010, pp. 883-891. doi:10.1109/TFUZZ.2010.2050892
[21] W. Aggoune, R. Kharel and K. Busawon, “On Feedback Stabilization of Nonlinear Discrete-Time State-Delayed Systems,” ECC Conference, 23-26 August 2009, Budapest.
[22] H. J. Gao and T. W. Chen, “New Results on Stability of Discrete-Time Systems with Time-Varying State Delay,” IEEE Transactions on Automatic Control, Vol. 52, No. 2, 2007, pp. 328-334. doi:10.1109/TAC.2006.890320
[23] S. Ibrir, W. F. Xie and C.-Y. Su, “Observer Design for Discrete-Time Systems Subject to Time Delay Nonlinearities,” International Journal of Systems Science, Vol. 37, No. 9, 2006, pp. 629-641. doi:10.1080/00207720600774289
[24] Q.-L. Wei, H.-G. Zhang, D.-R. Liu and Y. Zhao, “An Optimal Control Scheme for a Class of Discrete-Time Nonlinear Systems with t Delays Using Adaptive Dynamic Programming,” ACTA Automatica Sinica, Vol. 36, No. 1, 2010, pp. 121-129. doi:10.3724/SP.J.1004.2010.00121
[25] K. E. Bouazza, M. Boutayeb and M. Darouach, “State Feedback Stabilization of Discrete-Time Delay Nonlinear Systems,” Proceedings of Mathematical Theory of Networks and Systems, Leuven, 5-9 July 2004.
[26] E. J. Hartman, J. D. Keelar and J. M. Kowalski, “Layered Neural Networks with Gaussian Hidden Units as Universal Approximation,” Neural Computation, Vol. 2, 1990, pp. 210-215. doi:10.1162/neco.1990.2.2.210
[27] S. Chen, S. A. Billings and P. M. Grant, “Recursive Hybrid Algorithm for Nonlinear System Identification Using Radial Basis Function Networks,” International Journal of Control, Vol. 55, No. 5, 1992, pp. 1051-1070. doi:10.1080/00207179208934272
[28] S. V. T. Elanayar and Y. C. Shin, “Radial Basis Function Neural Network for Approximation and Estimation of Nonlinear Stochastic Dynamic Systems,” IEEE Transactions on Neural Networks, Vol. 5, 1994, pp. 594-603. doi:10.1109/72.298229
[29] J. C. Patra and A. C. Kot, “Nonlinear Dynamic System Identification Using Chebyshev Functional Link Artificial Neural Networks,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 32, No. 4, 2002, pp. 505-511. doi:10.1109/TSMCB.2002.1018769
[30] A. Namatame and N. Ueda, “Pattern Classification with Chebyshev Neural Network,” International Journal Neural Network, Vol. 3, 1992, pp. 23-31.
[31] T. T. Lee and J. T. Jeng, “The Chebyshev Polynomial Based Unified Model Neural Networks for Functions Approximations,” IEEE Transactions on Systems, Man & Cybernetics, Part B, Vol. 28, No. 6, 1998, pp. 925-935.
[32] S. Purwar, I. N. Kar and A. N. Jha, “Adaptive Output Feedback Tracking Control of Robot Manipulators Using Position Measurements Only,” Expert Systems with Applications, Vol. 34, 2008, pp. 2789-2798. doi:10.1016/j.eswa.2007.05.030
[33] S. Purwar, I. N. Kar and A. N. Jha, “On-Line System Identification of Complex Systems Using Chebyshev Neural Networks,” Applied Soft Computing, Vol. 7, No. 1, 2005, pp. 364-372. doi:10.1016/j.asoc.2005.08.001
[34] C. Kwan and F. L. Lewis, “Robust Backstepping Control of Nonlinear Systems Using Neural Networks,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 30, No. 6, 2000, pp. 753-766. doi:10.1109/3468.895898

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.