Determination of bacterial viability by selective capture using surface-bound siderophores

Abstract

A significant challenge in bacterial detection is the identification of viable bacteria over debris, specifically post decontamination. Of increasing concern are antibiotic resistant strains that require accurate and rapid post decontamination analysis. Current strategies are fraught with disadvantages and most of them are not selective for viable bacteria. However, bacteria are critically dependent upon iron sequestration, synthesizing and releasing siderophores (SDPs) to tightly bind iron, with the subsequent uptake of iron bound SDPs. This is a highly conserved process that occurs only in intact bacteria. Herein we report a facile method to use bacterial SDPs to selectively and rapidly identify only viable bacteria in complex matrices, and discriminate them from their dead counterparts. Desferrioxamine B (Desf B) tethered to a glass slide is used to specifically capture viable bacteria from a mixture of viable and dead Escherichia coli, as demonstrated by fluorescence microscopy. We re- port both direct conjugation of Desf B on thin-film-coated glass slides as well as biotin-streptavidin conjugation strategies, both of which are successful in the said goal. We have analyzed the density of images obtained upon fluorescence staining using edge detection with a Canny edge detector. This novel application of a software analysis tool originally developed for satellite imaging to biological staining allows for accurate quantitation of observed data.

Share and Cite:

Wolfenden, M. , Sakamuri, R. , Anderson, A. , Prasad, L. , Schmidt, J. and Mukundan, H. (2012) Determination of bacterial viability by selective capture using surface-bound siderophores. Advances in Biological Chemistry, 2, 396-402. doi: 10.4236/abc.2012.24049.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Robert, K. (2011) EHEC/HUS O104:H4: The outbreak is considered to be over. http://www.rki.de/EN/Home/PM_EHEC.html
[2] Flynn, D. (2011) Germany’s E. coli outbreak most costly in history. food safety news. http://www.foodsafetynews.com/2011/06/europes-o104-outbreak---most-costly-in-history/
[3] Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J. and Wittwer, C.T. (2009) The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611-622. doi:10.1373/clinchem.2008.112797
[4] Drake, J.W. (1993) Rates of spontaneous mutation among RNA viruses. Proceedings of the National Academy of Sciences USA, 90, 4171-4175. doi:10.1073/pnas.90.9.4171
[5] Hensley, S.E., Das, S.R., Bailey, A.L., Schmidt, L.M., Hickman, H.D., Jayaraman, A., Viswanathan, K., Raman, R., Sasisekharan, R., Bennink, J.R. and Yewdell, J.W. (2009) Hemagglutinin receptor binding avidity drives influenza a virus antigenic drift. Science, 326, 734-736. doi:10.1126/science.1178258
[6] Ratledge, C. and Dover, L.G. (2000) Iron metabolism in pathogenic bacteria. Annual Review of Microbiology, 54, 881-941. doi:10.1146/annurev.micro.54.1.881
[7] Neilands, J.B. (1995) Siderophores: Structure and function of microbial iron transport compounds. The Journal of Biological Chemistry, 270, 26723-26726.
[8] Carrano, C.J. and Raymond, K.N. (1979) Ferric Ion Sequestering Agents. 2. Kinetics and mechanism of iron removal from transferrin by enterobactin and synthetic tricatechols. Journal of the American Chemical Society, 101, 5401-5404. doi:10.1021/ja00512a047
[9] Braun, V. and Hantke, K. (2011) Recent insights into iron import by bacteria. Current Opinion in Chemical Biology, 15, 328-334. doi:10.1016/j.cbpa.2011.01.005
[10] Doorneweerd, D.D., Henne, W.A., Reifenberger, R.G. and Low, P.S. (2010) Selective capture and identification of pathogenic bacteria using an immobilized siderophore. Langmuir, 26, 15424-15429. doi:10.1021/la101962w
[11] Bugdahn, N., Peuckert, F., Albrecht, A.G., Miethke, M., Marahiel, M.A. and Oberthur, M. (2010) Direct identification of a siderophore import protein using synthetic petrobactin ligands. Angewandte Chemie International Edition, 49, 10210-10213. doi:10.1002/anie.201005527
[12] Roy, E.G., Jiang, C.H., Wells, M.L. and Tripp, C. (2008) Determining subnanomolar iron concentrations in oceanic seawater using a siderophore-modified film analyzed by infrared spectroscopy. Analytical Biochemistry, 80, 4689- 4695.
[13] Kim, Y., Lyvers, D.P., Wei, A., Reifenberger, R.G. and Low, P.S. (2012) Label-free detection of a bacterial pathogen using an immobilized siderophore, deferoxamine. Lab on a Chip, 12, 971-976. doi:10.1039/c2lc20904g
[14] Anderson, A.S., Dattelbaum, A.M., Montano, G.A., Price, D.N., Schmidt, J.G., Martinez, J.S., Grace, W.K., Grace, K.M. and Swanson, B.I. (2008) Functional PEG-modified thin films for biological detection. Langmuir, 24, 2240- 2247. doi:10.1021/la7033438
[15] Suo, Z.Y., Avci, R., Yang, X.H. and Pascual, D.W. (2008) Efficient immobilization and patterning of live bacterial cells. Langmuir, 24, 4161-4167. doi:10.1021/la7038653
[16] Suo, Z.Y., Yang, X.H., Avci, R., Deliorman, M., Rug-heimer, P., Pascual, D.W. and Idzerda, Y. (2009) Antibody Selection for Immobilizing Living Bacteria. Analytical Biochemistry, 81, 7571-7578.
[17] Challis, G.L. (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. ChemBioChem, 6, 601-611. doi:10.1002/cbic.200400283
[18] Keberle, H. (1964) The biochemistry of desferrioxamine and its relation to iron metabolism. Annals of the New York Academy of Sciences, 119, 758-768. doi:10.1111/j.1749-6632.1965.tb54077.x
[19] Clarke, T.E., Braun, V., Winkelmann, G., Tari, L.W. and Vogel, H.J. (2002) X-ray crystallographic structures of the Escherichia coli periplasmic protein FhuD bound to hydroxamate-type siderophores and the antibiotic albomycin. The Journal of Biological Chemistry, 277, 13966- 13972. doi:10.1074/jbc.M109385200
[20] Miller, M.J. (1989) Syntheses and therapeutic potential of hydroxamic acid based siderophores and analogs. Chemical Reviews, 89, 1563-1579. doi:10.1021/cr00097a011
[21] Roosenberg, J.M., Lin, Y.M., Lu, Y. and Miller, M.J. (2000) Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Current Medicinal Chemistry, 7, 159-197. doi:10.2174/0929867003375353
[22] Prasad, L. and Skourikhine, A.N. (2006) Vectorized image segmentation via trixel agglomeration. Pattern Recognition, 39, 501-514. doi:10.1016/j.patcog.2005.10.014
[23] Prasad, L. (2007) Rectification of the chordal axis transform skeleton and criteria for shape decomposition. Image and Vision Computing, 25, 1557-1571.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.