Green Synthesis of Silver Nanoparticles Using Extracts of Ananas comosus

Abstract

The biosynthesis of nanoparticles has been proposed as a cost effective and environmental friendly alternative to chemical and physical methods. Plant mediated synthesis of nanoparticles is a green chemistry approach that intercom nects nanotechnology and plant biotechnology. In the present study, synthesis of silver nanoparticles (AgNPs) or (Green-Silver) has been demonstrated using extracts of Ananas comosus reducing aqueous silver nitrate. The AgNPs were characterized by Ultraviolet-Visible (UV-vis) Spectrometer, Energy Dispersive X-ray Analysis (EDAX), Selected Area Diffraction Pattern (SAED) and High Resolution Transmission Electron Microscopy (HRTEM). TEM micrographs showed spherical particles with an average size of 12 nm. The XRD pattern showed the characteristic Bragg peaks of (111), (200), (220) and (311) facets of the face center cubic (fcc) silver nanoparticles and confirmed that these nanoparticles are crystalline in nature. The different types of antioxidants presented in the pineapple juice synergistically reduce the Ag metal ions, as each antioxidant is unique in terms of its structure and antioxidant function. The re- action process was simple for formation of silver nanoparticles and AgNPs presented in the aqueous medium were quite stable, even up to 4 months of incubation. This work proved the capability of using biomaterial towards the synthesis of silver nanoparticle, by adopting the principles of green chemistry.

Share and Cite:

N. Ahmad and S. Sharma, "Green Synthesis of Silver Nanoparticles Using Extracts of Ananas comosus," Green and Sustainable Chemistry, Vol. 2 No. 4, 2012, pp. 141-147. doi: 10.4236/gsc.2012.24020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. L. González and C. Noguezm, “Influence of Morphology on the Optical Properties of Metal Nanoparticles,” Journal of Computational and Theoretical Nanoscience, Vol. 4, No. 2, 2007, pp. 231-238.
[2] M. Gross, M. A. Winnacker and P. J. Wellmann, “Electrical, Optical and Morphological Properties of Nanoparticle Indium-Tin-Oxide Layers,” Thin Solid Films, Vol. 515, No. 24, 2007, pp. 8567-8572. doi:10.1016/j.tsf.2007.03.136
[3] J. Y. Kim, M. Kim, H. M. Kim, J. Joo and J. H. Choi, “Electrical and Optical Studies of Organic Light Emitting Devices Using SWCNTs-Polymer Nanocomposites,” Optical Materials, Vol. 21, No. 1-3, 2003, pp. 147-151. doi:10.1016/S0925-3467(02)00127-1
[4] W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros and C. A. Larabell, A. P. Alivisatos, “Biological Applications of Colloidal Nanocrystals,” Nanotechnology, Vol. 14, No. 7, 2003, pp. 15-27. doi:10.1088/0957-4484/14/7/201
[5] D. A. Schultz, “Plasmon Resonant Particles for Biological Detection,” Current Opinion Biotech, Vol. 14, No. 1, 2003, pp. 13-22. doi:10.1016/S0958-1669(02)00015-0
[6] A. M. Smith, H. Duan, M. N. Rhyner, G. Ruan and S. Nie, “A Systematic Examination of Surface Coatings on the Optical and Chemical Properties of Semiconductor Quantum Dots,” Physical Chemistry Chemical Physics, Vol. 8, No. 33, 2006, pp. 3895-3903. doi:10.1039/b606572b
[7] G. H. Wei, Z. Zhou and Z. Liu, “A Simple Method for the Preparation of Ultrahigh Sensitivity Surface Enhanced Raman Scattering (SERS) Active Substrate,” Applied Surface Science, Vol. 240, No. 1-4, 2005, pp. 260-267. doi:10.1016/j.apsusc.2004.06.116
[8] H. Y. Wang, Y. F. Li and C. Z. Hua, “Detection of Ferulic Acid Based on the Plasmon Resonance Light Scattering of Silver Nanoparticles,” Special Issue on ChinaJapan-Korea Environmental Analysis,” Talanta, Vol. 72, No. 5, 2007, pp. 1698-1703.
[9] N. Ahmad, M. K. Alam, V. N. Singh and S. Sharma, “Bioprospecting AgNPs from Wild Desmodium Species,” Journal of Bionanoscience, Vol. 3, No. 2, 2009, pp. 97104.
[10] N. Ahmad, S. Sharma, M. K. Alam, V. N. Singh, S. F. Shamsi, B. R. Mehta and A. Fatma, “Rapid Synthesis of Silver Nanoparticles Using Dried Medicinal Plant of Basil,” Colloids and Surfaces B: Biointerfaces, Vol. 81, No. 1, 2010, pp. 81-86. doi:10.1016/j.colsurfb.2010.06.029
[11] N. Ahmad and S. S. Ahmad, “Biomediated AgNPS from Some Ethnobotanical Weeds—Pyllanthus amarus,” International Journal of Green Nanotechnology, Vol. 3, No. 2, 2011, pp. 109-117. doi:10.1080/19430892.2011.574569
[12] B. Ankamwar, M. Chaudhary and M. Sastry, “Gold Nanotriangles Biologically Synthesized using Tamarind Leaf Extract and Potential Application in Vapor Sensing,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, Vol. 35, No. 1, 2005, pp. 19-26. doi:10.1081/SIM-200047527
[13] S P Chandran, M Chaudhary, R Pasricha, A Ahmad and M Sastry, “Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloevera Plant Extract,” Biotechnology Progress, Vol. 22, No. 2, 2006, pp. 577-583. doi:10.1021/bp0501423
[14] S. P. Dubey, M. Lahtinenb, S. Heikki and M. Sillan, “Bioprospective of Sorbus aucuparia Leaf Extract in Development of Silver and Gold Nanocolloids,” Colloids and Surfaces B: Biointerfaces, Vol. 80, No. 1, 2010, pp. 26-33. doi:10.1016/j.colsurfb.2010.05.024
[15] A. A. Zahir, A. Bagavan, C. Kamaraj, G. Elango and A. A. Rahuman, “Efficacy of Plant-Mediated Synthesized Silver Nanoparticles against Sitophilus oryzae,” JBiopest, v288, Suppl. 5, 2012, pp. 95-102.
[16] J. L. Gardea-Torresdey, J. G. Parsons, E. Gomez, J. PeraltaViddea, H. E. Troiani, P. Santiago and M. J. Yacaman, “Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants,” Nano Letters, Vol. 2, No. 4, 2002, pp. 397401. doi:10.1021/nl015673+
[17] V. Kumar and S. K. Yadav, “Plant-Mediated Synthesis of Silver and Gold Nanoparticles and Their Applications,” Journal of Chemical Technology and Biotechnology, Vol. 84, No. 2, 2009, pp. 151-157. doi:10.1002/jctb.2023
[18] S. Shankar, A. Ahmad and M. Sastry, “Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles,” Biotechnology Progress, Vol. 19, No. 6, 2003, pp. 1627-1631. doi:10.1021/bp034070w
[19] L. P. Hale, P. K. Greer, C. T. Trinh and C. L. James, “Proteinase Activity and Stability of Natural Bromelain Preparations,” International Immunopharmacology, Vol. 5, No. 4, 2005, pp. 783-793. doi:10.1016/j.intimp.2004.12.007
[20] T. Harrach, F. Garbin, E. Munzig, K. Eckert and H. R. Maurer, “P182 Bromelain: An immunomodulator with Anticancer Activity,” European Journal of Pharmaceutical Sciences, Vol. 2, No. 1-2, 1994, pp. 164-167. doi:10.1016/0928-0987(94)90355-7
[21] E. R. Secor Jr., W. F. Carlson, M. M. Cloutier, L. A. Guernsey, C. M. Schramm, C. A. Wu and R. S. Thrall, “Bromelain Exerts Anti-Inflammatory Effects in an Ovalbumin-Induced Murine Model of Allergic Airway Disease,” Cellular Immunology, Vol. 237, No. 1, 2005, pp. 68-75. doi:10.1016/j.cellimm.2005.10.002
[22] J. Sun, Y. Chu, X. Wu and R. Liu, “Antioxidant and Antiproliferative Activities of Common Fruits,” Journal of Agricultural and Food Chemistry, Vol. 50, No. 25, 2002, pp. 7449-7454. doi:10.1021/jf0207530
[23] Y. Z.Caia, Q. Luob, M. Sunc and H. Corke, “Antioxidant Activity and Phenolic Compounds of 112 Traditional Chinese Medicinal Plants Associated with Anticancer,” Life Sciences, Vol. 74, No. 17, 2004, pp. 2157-2184. doi:10.1016/j.lfs.2003.09.047
[24] A. Haripyarie, K. Guneshwor and M. Damayanti, “Evaluation of Antioxidant Properties of Phenolics Extracted from Ananas comosus L.,” Notulae Scientia Biologicae, Vol. 2, No. 2, 2010, pp. 68-71.
[25] M. Mhatre, J. Tilak-Jain, S. De and T. P. Devasagayam, “Evaluation of the Antioxidant Activity of Non-Transformed and Transformed Pineapple: A Comparative Study,” Food and Chemical Toxicology, Vol. 47, No. 11, 2009, pp. 2696-702. doi:10.1016/j.fct.2009.06.031
[26] E. Q. Zhang, “Chinese Medicinal Diet,” Publishing House of Shanghai College of Traditional Chinese Medicine, Shanghai, 1990, pp. 50-53.
[27] M. J. Laughton, P. J. Evans, M. A. Moroney, J. R. S. Howlt and B. Halliwell, “Inhibition of Mammalian 5Lipoxygenase and Cyclo-Oxygenase by Flavonoids and Phenolic Dietary Additives: Relationship to Antioxidant Activity and to Iron Ion-Reducing Ability,” Biochemical Pharmacology, Vol. 42, No. 9, 1991, pp. 1673-1681. doi:10.1016/0006-2952(91)90501-U
[28] B. C. Scott, J. B. Healliwll and O. B. Aruoma, “Evaluation of the Antioxidant Actions of Ferulic Acid and Catechins,” Free radical research communications, Vol. 19, No. 4, 1993, pp. 241-253. doi:10.3109/10715769309056512
[29] R. Hussain, S. J. Cillard and P. Cillard, “Hydroxyl Radical Scavenging Activity of Flavonoids,” Phytochemistry, Vol. 26, No. 9, 1989, pp. 2489-2491. doi:10.1016/S0031-9422(00)83860-1
[30] S. Panchawat and S. S. Sisodia, “In Vitro Antioxidant activity of Saraca Asoca Roxb. De Wilde Stem Bark Extracts from Various Extraction Processes,” Asian Journal of Pharmaceutical and Clinical Research, Vol. 3, No. 3, 2010, pp. 231-233.
[31] N. Deighton, R. Brennan, C. Finn and H. V. Davis, “Antioxidant Properties of Domesticated and Wild Rubus Species,” Journal of Science of Food and Agriculture, Vol. 80, No. 9, 2000, pp. 1307-1313. doi:10.1002/1097-0010(200007)80:9<1307::AID-JSFA638>3.0.CO;2-P
[32] M. A. Hossain and S. M. N. Rehman, “Total Phenolics, Flavonoids and Antioxidant Activity of Tropical Fruit Pineapple,” Food Research International, Vol. 44, No. 3, 2011, pp. 672-676. doi:10.1016/j.foodres.2010.11.036
[33] E. S. Yapo, H. T. Kouakou, L. K. Kouakou, J. Y. Kouadio, P. Kouaméand and J. M. Mérillon “Phenolic Profiles of Pineapple Fruits (Ananas comosus L. Merrill) Influence of the Origin of Suckers,” the Australian Journal of Basic and Applied Sciences, Vol. 5, No. 6, 2011, pp. 13721378.
[34] G. Ernst, “Antioxidant Potential of Ferulic Acid,” Free Radical Biology and Medicine, Vol. 13, No. 4, 1999, pp. 435-448.
[35] J. H. Chen and C. T. Ho, “Antioxidant Activities of Caffeic Acid and Its Related Hydroxycinnamic Acid Compounds,” Journal of Agricultural and Food Chemistry, Vol. 45, No. 7, 1997, pp. 2374-2378. doi:10.1021/jf970055t
[36] L. Panzella, A. Napolitano and M. d’Ischia, “Oxidative Conjugation of Chlorogenic Acid with Glutathione: Structural Characterization of Addition Products and a New Nitrite-Promoted Pathway,” Bioorganic & Medicinal Chemistry, Vol. 11, No. 22, 2003, pp. 4797-4805. doi:10.1016/S0968-0896(03)00460-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.