Adsorption of Cu(II) on maghnite from aqueous solution: Effects of pH, initial concentration, interaction time and temperature

DOI: 10.4236/ns.2012.411114   PDF   HTML     4,107 Downloads   7,173 Views   Citations


The adsorption behaviour of Cu2+ onto maghnite was conducted under batch conditions. The effect of time, pH of the dispersion, temperature and initial metal concentration on the adsorption of Cu2+ onto maghnite was investigated. In this study, 94% of Cu(II), was adsorbed on the maghnite clay when the equilibrium was reached at 120 min. The adsorption of Cu2+ was a fast process that followed the pseudo-second-order kinetics. This process could be described by the Langmuir model and gave a maximum Cu2+ adsorption capacity of 21.78 mg/g at 293 K. The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated from the slope and intercept of lnKd vs. 1/T plots. The adsorption was endothermic reaction. The adsorption process for this natural maghnite is more spontaneous because the values of ΔG are less negative. The results suggested that natural maghnite was suitable as sorbent material for the recovery and adsorption of metal ion from aqueous solutions.

Share and Cite:

Zenasni, M. , Benfarhi, S. , Merlin, A. , Molina, S. , George, B. and Meroufel, B. (2012) Adsorption of Cu(II) on maghnite from aqueous solution: Effects of pH, initial concentration, interaction time and temperature. Natural Science, 4, 856-868. doi: 10.4236/ns.2012.411114.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Jiang, M.Q., Jin, X.Y., Lu, X.Q. and Chen, Z.L. (2010) Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination, 252, 33-39. doi:10.1016/j.desal.2009.11.005
[2] LI, Y., Huang, Z.H., Kang, F.Y. and Li, B.H. (2010) Preparation of activated carbon microspheres from phenolic resin with metal compounds by sub- and supercritical water activation. New Carbon Materials, 25, 109-113. doi:10.1016/S1872-5805(09)60019-6
[3] Salem, A. and Akbari Sene R. (2011) Removal of lead from solution by combination of natural zeolite-kaolinbentonite as a new low-cost adsorbent. Chemical Engineering Journal, 174, 619-628. doi:10.1016/j.cej.2011.09.075
[4] Yousef, R.I., El-Eswed, B. and Al-Muhtaseb, A.H. (2011) Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies. Chemical Engineering Journal, 171, 1143-1149. doi:10.1016/j.cej.2011.05.012
[5] Harrane, A., Belaouedj, M.A. and Belbachir, M. (2011) Cationic ring-opening polymerization of (d,l-lactide) using Maghnite-H+, a non-toxic catalyst. Reactive and Functional Polymers, 71, 126-130. doi:10.1016/j.reactfunctpolym.2010.11.022
[6] Bhattacharyya, K.G. and Gupta, S.S. (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140, 114-131. doi:10.1016/j.cis.2007.12.008
[7] Anirudhan, T.S. and Suchithra, P.S. (2010) Heavy metals uptake from aqueous solutions and industrial wastewaters by humic acid-immobilized polymer/bentonite composite: Kinetics and equilibrium modeling. Chemical Engineering Journal, 156, 146-156. doi:10.1016/j.cej.2009.10.011
[8] Sdiri, A., Higashi, T., Hatta, T., Jamoussi, F. and Tase, N. (2011) Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems. Chemical Engineering Journal, 172, 37-46. doi:10.1016/j.cej.2011.05.015
[9] Zenasni, M.A., Benfarhi, S. and Meroufel, B. (2011) Effect of the degree of ionization on the insertion of polyvinylpyridinium salts into Bentonite. Hindawi Publishing Corporation, International Journal of Inorganic Chemistry, Article ID 723020, 1-6. doi:10.1155/2011/723020
[10] Zenasni, M.A., Benfarhi, S., Mansri, A., Benmehdi, H., Meroufel, B., Desbrieres, J. and Dedriveres, R. (2011) Influence of pH on the uptake of toluene from water by the composite poly (4-vinylpyridinium)-maghnite. African Journal of Pure and Applied Chemistry, 5, 486-493. doi:10.5897/AJPAC11.066
[11] Adebowale, K.O., Unuabonah, I.E. and Olu-Owolabi, B.I. (2006) The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. Journal of Hazardous Materials, 134, 130-139. doi:10.1016/j.jhazmat.2005.10.056
[12] Sarier, N. and Onder, E. (2010) Organic modification of montmorillonite with low molecular weight polyethylene glycols and its use in polyurethane nanocomposite foams. Thermochimica Acta, 510, 113-121. doi:10.1016/j.tca.2010.07.004
[13] Sarier, N., Onder, E. and Ersoy, S. (2010) The modification of Na-montmorillonite by salts of fatty acids: An easy intercalation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 371, 40-49. doi:10.1016/j.colsurfa.2010.08.061
[14] Desai, J.D., Pathan, H.M., Min, S.-K., Jung, K.-D. and Joo, O.S. (2005) FT-IR, XPS and PEC characterization of spray deposited hematite thin films, Applied Surface Science, 252, 1870-1875. doi:10.1016/j.apsusc.2005.03.135
[15] Leszczynska, A., Njuguna, J., Pielichowski, K. and Banerjee, J.R. (2007) Polymer/montmorillonite nanocomposites with improved thermal properties Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochimica Acta, 454, 1-22
[16] Abollino, O., Aceto, M., Malandrino, M., Sarzanini, C. and Mentasti, E. (2003) Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Research, 37, 1619-1627. doi:10.1016/S0043-1354(02)00524-9
[17] Gupta, S.S. and Bhattacharyya, K.G. (2008) Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of Environmental Management, 87, 46-58. doi:10.1016/j.jenvman.2007.01.048
[18] Fan, Q.H., Shao, D.D., Hu, J., Wu, W.S. and Wang, X.K. (2008) Comparison of Ni2+ sorption to bare and ACTgraft attapulgites: Effect of pH, temperature and foreign ions. Surface Science, 602, 778-785. doi:10.1016/j.susc.2007.12.007
[19] Wang, X.K., Chen, C.L., Hu, W.P., Ding, A.P., Xu, D. and Zhou, X. (2005) Sorption of 243Am(III) to multiwall carbon nanotubes. Environmental Science & Technology, 39, 2856-2860. doi:10.1021/es048287d
[20] Tsai, S.C., Ouyang, S. and Hsu, C.N. (2001)Sorption and diffusion behavior of Cs and Sr on Jih-Hsing bentonite, Applied Radiation and Isotopes, 54, 209-215. doi:10.1016/S0969-8043(00)00292-X
[21] Bhattacharyya, K.G. and Gupta, S.S. (2008) Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium. Applied Clay Science, 41, 1-9. doi:10.1016/j.clay.2007.09.005
[22] Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361-1403. doi:10.1021/ja02242a004
[23] Huang, Y.H., Hsueh, C.L., Cheng, H.P., Su, L.C. and Chen, C.Y. (2007) Thermodynamics and kinetics of adsorption of Cu(II) onto waste iron oxide. Journal of Hazardous Materials, 144, 406-411.
[24] Ayd?n, H., Bulut, Y. and Yerlikaya, C. (2008) Removal of copper (II) from aqueous solution by adsorption onto lowcost adsorbents. Journal of Environmental Management, 87, 37-45. doi:10.1016/j.jenvman.2007.01.005
[25] Weng, C.H., Tsai, C.Z., Chu, S.H. and Sharma, Y.C. (2007) Adsorption characteristics of copper(II) onto spent activated clay. Separation and Purification Technology, 54, 187-197. doi:10.1016/j.seppur.2006.09.009
[26] Freundlich, H. (1906) über die adsorption in l?sungen. Zeitschrift für Physikalische Chemie (Leipzig), 57, 385- 470.
[27] Eren, E. (2008) Removal of copper ions by modified Unye clay, Turkey. Journal of Hazardous Materials, 159, 235-244. doi:10.1016/j.jhazmat.2008.02.035
[28] Sari, A., Tuzen, M. and Soylak, M. (2007) Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. Journal of Hazardous Materials, 144, 41-46. doi:10.1016/j.jhazmat.2006.09.080
[29] Sari, A., Tuzen, M., Citak, D. and Soylak, M. (2007) Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. Journal of Hazardous Materials, 148, 387-394. doi:10.1016/j.jhazmat.2007.02.052
[30] Xu, D., Tan, X.L., Chen, C.L. and Wang, X.K. (2008) Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: Effect of pH, ionic strength, foreign ions and temperature. Applied Clay Science, 41, 37-46. doi:10.1016/j.clay.2007.09.004
[31] Günay, A., Arslankaya, E. and Tosun, I. (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146, 362-371. doi:10.1016/j.jhazmat.2006.12.034
[32] Veli, S. and Alyüz, B. (2007) Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 149, 226-233. doi:10.1016/j.jhazmat.2007.04.109
[33] Nunes, L.M. and Airoldi, C. (1999) Some features of crystalline α-titanium hydrogenphosphate, modified sodium and n-butylammonium forms and thermodynamics of ionic exchange with K+ and Ca2+. Thermochimica Acta, 328, 297-305. doi:10.1016/S0040-6031(98)00654-6

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.