The Anisotropy of Cosmic Rays and the Global Anisotropy of Physical Space


The influence of a new anisotropic factor onto the mechanism of accelerating cosmic rays up to ultrahigh energies (CR UHE) due to a new global natural force with the anisotropic behavior is considered. The directions in the physical space along which CR UHE can arrive, are predicted. A brief comparative analysis of these directions together with the obtained experimental results is given. Their qualitative coincidences are shown.

Share and Cite:

Y. Baurov, "The Anisotropy of Cosmic Rays and the Global Anisotropy of Physical Space," Journal of Modern Physics, Vol. 3 No. 11, 2012, pp. 1744-1748. doi: 10.4236/jmp.2012.311216.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. Guillian, et al., “Observation of Anisotropy of 10 TeV Primary Cosmic Ray Nulei Flux with the Super-Kamiokande-1 Detector,” Physical Review D, Vol. 75, No. 6, 2007, p. 062003. doi:10.1103/PhysRevD.75.062003
[2] P. A. Collab, “Update on the Correlation of the Highest Energy Cosmic Rays with Nearby Extragalactic Matter,” Astroparticle Physics, Vol. 34, No. 5, 2010, pp. 314-326. doi:10.1016/j.astropartphys.2010.08.010
[3] A. V. Glushkov, “Multipolar Anisotropy of Cosmic Ray with E ≥ 1017 eV by Data of Ykutskoy Installation SHAL,” Physics of Atomic Nuclei, Vol. 74, No. 1, 2011, pp. 60-67.
[4] V. Abrashkin, et al., “Updated TUS Space Fluorescence Detector for Study of UHECR,” Advances in Space Research, Vol. 41, No. 12, 2008, pp. 2079-2088. doi:10.1016/j.asr.2007.03.036
[5] Y. Takahashi and JEM-EUSO Collaboration, “The JEM-EUSO Mission,” New Journal of Physics, Vol. 11, 2009, p. 065009. doi:10.1088/1367-2630/11/6/065009
[6] E. Waxman, K. B. Fisher and T. Piran, “The Signature of a Correlation between >1019 eV Cosmic Ray Sources and Large Scale Structure,” The Astrophysical Journal, Vol. 483, No. 1, 1997, pp. 1-7.
[7] N. W Evans, F. Ferrer and S. Sarkar, “The Anisotropy of the Ultra-High Energy Cosmic Rays,” Astroparticle Physics, Vol. 17, No. 3, 2002, pp. 319-340.
[8] A. Cuoco, et al., “The Footprint of Large Scale Cosmic Structure on the Ultra-High Energy Cosmic Ray Distribution,” Journal of Cosmology and Astroparticle Physics, Vol. 1, 2006, p. 9.
[9] O. E. Kalashev, et al. “Global Anisotropy of Arrival Directions of Ultra-High Energy Cosmic Rays: Capability of Space Based Detectors,” Journal of Cosmology and Astroparticle Physics, Vol. 2008, No. 3, 2008, p. 5.
[10] A. Smialkowski, M. Giller and W. Michalak, “Luminous Infrared Galaxies as Possible Sources of the UHE Cosmic Rays,” Journal of Physics G: Nuclear and Particle Physics, Vol. 28, No. 6, 2002, pp. 1359-1374.
[11] V. A. Kuzmin, I. I. Tkachev, “Matter Creation via Vacuum Fluctuations in the Early Universe and Observed Ultrahigh Energy Cosmic Ray Events,” Physical Review D, Vol. 59, No. 12, 1999, p. 123006. doi:10.1103/PhysRevD.59.123006
[12] Y. A. Baurov, E. Y. Klimenko and S. I. Novikov, “Experimental Observation of Space Magnetic Anisotropy,” Doklady Akademii Nauk (DAN) USSR, Vol. 315,1990, pp. 1116-1120.
[13] Y. A. Baurov, E. Y. Klimenko and S. I. Novikov, “Experimental Observation of Space Magnetic Anisotropy,” Physics Letters A, Vol. 162, No. 1, 1992, pp. 32-34. doi:10.1016/0375-9601(92)90954-K
[14] Y. A. Baurov, “Space Magnetic Anisotropy and a New Interaction in Nature,” Physics Letters A, Vol. 181, No. 4, 1993, pp. 283-288. doi:10.1016/0375-9601(93)90609-4
[15] Y. A. Baurov and A. V. Kopaev, “Experimental Investigation of Signals of a New Nature with the Aid of Two High Precision Stationary Quartz Gravimeters,” Hadronic Journal, Vol. 25, No. , 2002, pp. 697-711.
[16] Y. A. Baurov, “On the Structure of Physical Vacuum and a New Interaction in Nature (Theory, Experiment and Applications),” Nova Science, New York, 2000.
[17] Y. A. Baurov, “Global Anisotropy of Physical Space, Experimental and Theoretical Basis,” Nova Science, New York, 2004.
[18] Y. A. Baurov and V. L. Shutov, “About Influence of Vectorial Magnetic Potential of Sun and Earth in ?-Decay Rate,” Applied Physics, Vol. 1, 1995, pp. 40-45.
[19] Y. A. Baurov, et al., “Experimental Investigations of Changes in β-Decay Rate of 60Co and 137Cs,” Modern Physics Letters A, Vol. 16, No. 32, 2001, pp. 2089-2101. doi:10.1142/S0217732301005187
[20] Y. A. Baurov, et al., “Experimental Investigation of Changes in ?-Decay Rate of the Radioactive Elements,” Physics of Atomic Nuclei, Vol. 70, No. 11, 2007, pp. 1825-1835. doi:10.1134/S1063778807110014
[21] Y. A. Baurov, et al., “Preliminary Results of 60Co β-Decay Rate Change Long-Term Experimental Investigation in 2010”, Applied Physics, Vol. 5, 2011, pp. 12-21.
[22] Y. A. Baurov, A. A. Shpitalnaya and I. F. Malov, “Global Anisotropy of Physical Space and Velocities of Pulsars,” International Journal Pure and Applied Physics, Vol. 1, No. 1, 2005, pp. 71-82.
[23] Y. A. Baurov and I. F. Malov, “On the Nature of Dark Matter and Dark Energy,” Journal Modern Physics, Vol. 1, No. 1, 2010, pp. 17-32. doi:10.4236/jmp.2010.11003
[24] Y. A. Baurov, et al., “Experimental Investigation of the Distribution of Pulsed-Plasma-Generator at Its Various Spatial Orientation and Global Anisotropy of Space,” Physics Letters A, Vol. 311, No. 6, 2003, pp. 512-523. doi:10.1016/S0375-9601(03)00567-X
[25] Yu. A. Baurov, V. G. Farafonov and A. G. Znak, “Experimental Investigation of Heat Content in the Jet of Magnetoplasmadynamic Accelerator in Accordance with its Spatial Orientation”, In: F. Gerard, Eds., Advances in Plasma Physics, Nova Science, New York, 2007, pp. 179-196.
[26] Y. A. Baurov, et al., “Seismic Activity of the Earth, the Cosmological Vectorial Potential and Method of a Short-Term Earthquakes Forecasting,” Natural Science, Vol. 3, No. 2, 2011, pp. 109-119. doi:10.4236/ns.2011.32016
[27] I. F. Malov and Y. A. Baurov, “The Distribution of the Spatial Velocities of Radio Pulsars,” Astronomy Reports, Vol. 51, No. 10, 2007, pp. 830-835. doi:10.1134/S1063772907100071
[28] Yu. M. Shirokov and N. P. Yudin, “Nuclear Physics,” Nauka, Moscow, 1980.
[29] “Astronomy: Century XXI,” In: V. G. Surdin, Ed., Fryazino: Century XX, 2007.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.