A nonlinear neural population coding theory of quantum cognition and decision making

DOI: 10.4236/wjns.2012.24028   PDF   HTML     4,737 Downloads   8,872 Views   Citations


Mathematical frameworks of quantum theory have recently been adopted in cognitive and behavioral sciences, to explain the violations of normative decision theory and anomalies in cognition. However, to date, no study has attempted to explore neural implementations of such “quantum-like” information processing in the brain. This study demonstrates that neural population coding of information with nonlinear neural response functions can account for such “quantum” information processing in decision-making and cognition. It is also shown that quantum decision theory is a special case of more general population vector cording theory. Future applications of the present theory in the rapidly evolving field of “psychophysical neuroeconomics” are also discussed.

Share and Cite:

Takahashi, T. and Cheon, T. (2012) A nonlinear neural population coding theory of quantum cognition and decision making. World Journal of Neuroscience, 2, 183-186. doi: 10.4236/wjns.2012.24028.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Dirac, P.A.M. (1982) The principles of quantum mechanics. Oxford University Press, Oxford.
[2] Sakurai, J.J. (1994) Modern quantum mechanics. Pearson Education Inc. New Jersey.
[3] Peres, A. (1995) Quantum theory: Concepts and methods. Fundamental Theories of Physics, Dordrecht.
[4] Nielsen, M.A. and Chuang, I.L. (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge.
[5] Busemeyer, J.R., Pothos, E.M., Franco, R., and Trueblood, J. (2011). A quantum theoretical explanation for probability judgment errors. Psychological Review, 118, 193-218. doi:10.1037/a0022542
[6] Busemeyer, J.R. and Bruza, P.D. (2012) Quantum models of cognition and decision. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511997716
[7] Cheon, T. and Takahashi, T. (2010) Interference and inequality in quantum decision theory. Physics Letters A, 375, 100-104. doi:10.1016/j.physleta.2010.10.063
[8] Cheon, T. and Takahashi, T. (2012) Quantum phenomenology of conjunction fallacy. Journal of Physical Society of Japan, 81, 104801. doi:10.1143/JPSJ.81.104801
[9] Franco, R. (2009). The conjunctive fallacy and interference effects. Journal of Mathematical Psychology, 53, 415-422. doi:10.1016/j.jmp.2009.02.002
[10] Khrennikov, A. (2010) Ubiquitous quantum structure. Springer, Berlin. doi:10.1007/978-3-642-05101-2
[11] Yukalov, V., and Sornette, D. (2010). Decision theory with prospect interference and entanglement. Theory and Decision, 68, 1-46.
[12] Koch, C. and Hepp, K. (2006) Quantum mechanics in the brain. Nature, 440, 611. doi:10.1038/440611a
[13] Savage, L.J. (1954). The foundations of statistics. Wiley Publications, New York.
[14] Tversky, A. and Shafir, E. (1992) The disjunction effect in choice under uncertainty. Psychological Science, 3, 305-309. doi:10.1111/j.1467-9280.1992.tb00678.x
[15] Shafir, E. and Tversky, A. (1992) Thinking through un- certainty: Nonconsequential reasoning and choice. Cognitive Psychology, 24, 449-474. doi:10.1016/0010-0285(92)90015-T
[16] Tversky, A. and Kahneman, D. (1983) Extension versus intuitive reasoning: The conjunctionfallacy in probability judgment. Psychological Review, 90, 293-315. doi:10.1037/0033-295X.90.4.293
[17] Averbeck, B.B. and Lee, D. (2004) Coding and transmis- sion of information by neural ensembles. Trends in Neuroscience, 27, 225-230. doi:10.1016/j.tins.2004.02.006
[18] Bensmaia, S.J. (2008) Tactile intensity and population codes. Behavioural Brain Research, 190, 165-173. doi:10.1016/j.bbr.2008.02.044
[19] Johnson, K.O., Hsiao, S.S. and Yoshioka, T. (2002) Neural coding and the basic law of psychophysics. Neuroscientist, 8, 111-121. doi:10.1177/107385840200800207
[20] Georgopoulos, A.P., Schwartz, A.B. and Kettner, R.E. (1986) Neuronal population coding of movement direction. Science, 233, 1416-1419. doi:10.1126/science.3749885
[21] Kandel, E., Schwartz, J. and Jessell, T. (2000) Principles of neural science. McGraw-Hill, New York.
[22] Stevens, S.S. (1957). On the psychophysical law. Psychological Review, 64, 153-181. doi:10.1037/h0046162
[23] Takahashi, T. (2009) Theoretical frameworks for neuro- economics of intertemporal choice. Journal of Neuroscience, Psychology, and Economics, 2, 75-90. doi:10.1037/a0015463
[24] Takahashi, T (2011) Psychophysics of the probability weighting function. Physica A, 390, 902-905. doi:10.1016/j.physa.2010.10.004
[25] Takahashi, T., Oono, H. and Radford, M.H.B. (2008) Psychophysics of time-perception and intertemporal choice models. Physica A, 387, 2066-2074. doi:10.1016/j.physa.2007.11.047
[26] Han, R. and Takahashi, T. (2012) Psychophysics of valuation and time perception in temporal discounting of gain and loss. Physica A, 391, 6568-6576. doi:10.1016/j.physa.2012.07.012
[27] Takahashi, T. (2005) Loss of self-control in intertemporal choice may be attributable to logarithmic time-perception. Medical Hypotheses, 65, 691-693. doi:10.1016/j.mehy.2005.04.040
[28] Zauberman, G., Kim, B.K., Malkoc, S. and Bettman, J. (2009) Discounting time and time discounting: Subjective time perception and intertemporal preferences. Journal of Marketing Research, 46, 543-556. doi:10.1509/jmkr.46.4.543

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.