Magnetization of Nano-Size Subsystem in a Two-Dimensional Ising Square Lattice


A two-dimensional Ising square lattice is modeled as a nano-size block array to study by Monte Carlo simulation the magnetic thermal stability of nano-structure magnetic media for data storage, thereon in the blocks J1 > 0 is assigned for the interaction of a pair of nearest-neighbor spins, while 0 J0 J1 for that in regions between the blocks and (J0 + J1)/2 for the nearest-neighbor pairs with one in the block and the other one out of but near-most the block. We show that the magnetic thermal stability of the block accrues with the increase of J1 and with the decrease of J1 - J0 for a given J1, but contrarily, the anchoring ability for the initial magnetic orientation in nano-size block trails off as J1 - J0 diminish. This phenomena and size dependence of such anchoring ability are discussed in detail.

Share and Cite:

L. He, R. Wang, C. Yin, S. Peng and D. Qian, "Magnetization of Nano-Size Subsystem in a Two-Dimensional Ising Square Lattice," World Journal of Condensed Matter Physics, Vol. 2 No. 4, 2012, pp. 175-180. doi: 10.4236/wjcmp.2012.24029.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. Rafal, T. Kasama, A. Wei, S. L. Tripp, M. J. Hytch, E. Snoeck, R. J. Harrison and A. Putnis, “Off-Axis Electron Holography of Magnetic Nanowirse and Chains, Rings, and Planar Arrays of Magnetic Nanoparticles,” Microscopy Research and Technique, Vol. 64, No. 5-6, 2004, pp. 390-402.
[2] D. F. Wang, A. Takahashi, Y. Matsumoto, K. M. Itoh, Y. Yamamoto, T. Ono and M. Esash, “Magnetic Mesa Structures Fabricated Reactive Ion Etching with CO/NH3/Xe Plasma Chemistry for an All-Silicon Quantum Computer,” Nanotechnology, Vol. 16, No. 6, 2005, pp. 990-994. doi:10.1088/0957-4484/16/6/062
[3] R. F. Service, “Is the Terabit Within Reach?” Science, Vol. 314, No. 5807, 2006, pp. 1868-1870. doi:10.1126/science.314.5807.1868
[4] R. Sbiaa and S. N. Piramanayagam, “Patterned Media towards Nano-Bit Magnetic Recording: Fabrication and Challenges,” Recent Patents on Nanotechnology, Vol. 1, No. 1, 2007, pp. 29-40. doi:10.2174/187221007779814754
[5] F. Golmar, M. Villafuerte, A. M. Navarro, C. E. R. Torres, J. Barzola-Quiquia, P. Esquinazi and S. P. Heluani, ZnO:Co Diluted Magnetic Semiconductor or Hybrid Nanostructure for Spintronics,” Journal of Materials Science , Vol. 45, No. 22, 2010, pp. 6174-6178.
[6] Q. Jie, J. Zhou, X. Shi, I. K. Dimitrov and Q. Li, “Strong Impact of Grain Boundaries on the Thermoelectric Properties of Non-Equilibrium Synthesized p-Type Ce1.05Fe4Sb12.04 Filled Skutterudites with Nanostructure,” arXiv: 1006.5715v1, 2010.
[7] G. Choe, B. R. Acharya, K. E. Johnson and K. J. Lee, “Transition and DC Noise Characteristics of Longitudinal Oriented Media,” IEEE Transactions on Magnetics, Vol. 39, No. 5, 2003, pp. 2264-2266. doi:10.1109/TMAG.2003.816266
[8] J. L. García-Palacios and F. J. Lázaro, “Langevin Dynamics Dynamics Study of the Dynamical Properties of Small Magnetic Particles,” Physical Review B, Vol. 58, No. 22, 1998, pp. 14937-14958. doi:10.1103/PhysRevB.58.14937
[9] W. T. Coffey, D. S. F. Crothers, J. L. Dormann, Yu. P. Kalmykov, E. C. Kennedy and W. Wernsdorfer, “Thermally Activated Relaxation Time of a Single Domain Ferromagnetic Particle Subjected to a Uniform Field at an Oblique Angle to the Easy Axis: Comparison with Experimental Observations,” Physical Review Letters, Vol. 80, No. 25, 1998, pp. 5655-5658. doi:10.1103/PhysRevLett.80.5655
[10] D. A. Stariolo and O. V. Billoni, “Dipolar Interactions and Thermal Stability of Two-Dimensional Nanoparticle Arrays,” Journal of Physics D: Applied Physics, Vol. 41, 2008, 7 p.
[11] K. Christensen and N. R. Moloney, “Complexity and Criticality,” Imperial College Press, London, 2005. doi:10.1142/p365
[12] K. binde and W. Kob, “Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics,” World Scientific Publishing Co., Singapore, 2005.
[13] M. S. Daw and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Physical Review Letters, Vol. 50, No. 17, 1983, pp. 1285-1288. doi:10.1103/PhysRevLett.50.1285
[14] S. M. Foiles, “Calculation of the Surface Segregation of Ni-Cu Alloys with the Use of the Embedded-Atom Me- thod,” Physical Review B, Vol. 32, No. 12, 1985, pp. 7685-7693. doi:10.1103/PhysRevB.32.7685
[15] D. K. Landau and K. Binder, “A Guide to Monte Carlo Simulations in Statistical Physics,” World Scientific Pub- lishing Co., Singapore, 2000.
[16] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord and J. Nogués, “Beating the Superparamagnetic Limit with Exchange Bias,” Nature, Vol. 423, 2003, pp. 850-853. doi:10.1038/nature01687

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.