Effects of Changed Climate Conditions on Tropospheric Ozone over Three Centuries

Abstract

The ozone chemistry in four decades (1890s, 1990s, 2090s and 2190s) representing the changes over three centuries has been simulated using the chemistry version of the atmospheric long-range transport model: the Danish Eulerian Hemispheric Model (DEHM) forced with meteorology projected by theECHAM5/MPI-OM coupled Atmosphere-Ocean General Circulation Model. The largest changes in meteorology, ozone and its precursors are found in the 21st century, however, also significant changes are found in the 22nd century. At surface level the ozone concentration is projected to increase due to climate change in the areas where substantial amounts of ozone precursors are emitted. Elsewhere a significant decrease is projected at the surface. In the free troposphere a general increase is found in the entire Northern Hemisphere except in the tropics, where the ozone concentration is decreasing. In the Arctic the ozone concentration will increase in the entire air column, which most likely is due to changes in atmospheric transport. Changes in temperature, humidity and the naturally emitted Volatile Organic Compounds (VOCs) are governing the changes in ozone both in the past, present and future century.

Share and Cite:

G. Brandt Hedegaard, J. Heile Christensen, C. Geels, A. Gross, K. Mantzius Hansen, W. May, A. Zare and J. Brandt, "Effects of Changed Climate Conditions on Tropospheric Ozone over Three Centuries," Atmospheric and Climate Sciences, Vol. 2 No. 4, 2012, pp. 546-561. doi: 10.4236/acs.2012.24050.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. L. Wu, L. J. Mickley, D. J. Jacob, D. Rind and D. G. Streets, “Effects of 2000-2050 Changes in Climate and Emissions on Global Tropospheric Ozone and the Policy-Relevant Background Ozone in the United States,” Journal of Geophysical Research, Vol. 113, 2008, Article ID: D18312.
[2] P. N. Racherla and P. J. Adams, “The Response of Surface Ozone to Climate Change over Eastern United States,” Atmospheric Chemistry and Physics, Vol. 8, No. 4, 2008, pp. 871-885. doi:10.5194/acp-8-871-2008
[3] G. B. Hedegaard, J. Brandt, J. H. Christensen, L. M. Frohn, C. Geels, K. M. Hansen and M. Stendel, “Impacts of Climate Change on Air Pollution Levels in the Northern Hemisphere with Special Focus on Europe and the Arctic,” Atmospheric Chemistry and Physics, Vol. 8, No. 12, 2008, pp. 3337-3367. doi:10.5194/acp-8-3337-2008
[4] E. Katragkou, P. Zanis, I. Tegoulias, D. Melas, I. Kioutsioukis, B. C. Krger, P. Huszar, T. Halenka and S. Rauscher, “Decadal Regional Air Quality Simulations over Europe in Present Climate: Near Surface Ozone Sensitivity to External Meteorological Forcing,” Atmospheric Chemistry and Physics, Vol. 10, 2010, pp. 11805-11821.
[5] C. Andersson and M. Engardt, “European Ozone in a Future Climate: Importance of Changes in Dry Deposition and Isoprene Emissions,” Journal of Geophysical Research, Vol. 115, No. D2, 2010, Article ID: D02303. doi:10.1029/2008JD011690
[6] J. Langner, M. Engardt, A. Baklanov, J. Christensen, M. Gauss, C. Geels, G. B. Hedegaard, R. Nuterman, D. Simpson, J. Soares, M. Sofiev, P. Wind and A. Zakey, “A Multi-Model Study of Impacts of Climate Change on Surface Ozone in Europe,” Atmospheric Chemistry and Physics, Vol. 12, No. 2, 2012, pp. 4901-4939. doi:10.5194/acpd-12-4901-2012
[7] E. Roeckner, G. Bauml, L. Bonaventura, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida and A. Tompkins, “The Atmospheric General Circulation Model ECHAM5, Part I,” Max-Planck-Institute für Meteorologie, Hamburg, 2003.
[8] E. Roeckner, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, E. Kornblueh, L. Manzini, U. Schlese and U. Schulzweida, “Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model,” Journal of Climate, Vol. 19, No. 16, 2006, pp. 3771-3791. doi:10.1175/JCLI3824.1
[9] S. J. Marsland, H. Haak, J. H. Jungclaus, M. Latif and F. Roske, “The Max-Planck-Institute Global Ocean/Sea Ice Model with Orthogonal Curvilinear Coordinates,” Ocean Modelling, Vol. 5, No. 2, 2003, pp. 91-127. doi:10.1016/S1463-5003(02)00015-X
[10] W. May, “Climatic Changes Associated with a Global 2 Degrees C-Stabilization Scenario Simulated by the EC HAM5/MPI-OM Coupled Climate Model,” Climate Dynamics, Vol. 31, No. 2-3, 2008, pp. 283-313. doi:10.1007/s00382-007-0352-8
[11] J. H. Jungclaus, N. Keenlyside, M. Botzet, H. Haak, J. J. Luo, M. Latif, J. Marotzke, U. Mikolajewicz and E. Roeckner, “Ocean Circulation and Tropical Variability in the Coupled Model ECHAM5/MPI-OM,” Journal of Climate, Vol. 19, No. 16, 2006, pp. 3952-3972. doi:10.1175/JCLI3827.1
[12] N. Nakicenovic, J. Alcamo, G. Davis, B. de Vries, J. Fenhann, S. Gaffin, K. Gregory, A. Grbler, T. Jung, T. Kram, E. L. Rovere, L. Michaelis, S. Mori, T. Morita, W. Pepper, H. Pitcher, L. Price, K. Riahi, A. Roehrl, H.-H. Rogner, A. Sankovski, M. Schlesinger, P. Shukla, S. Smith, R. Swart, S. van Rooijen, N. Victor and Z. Dadi, “Special Report on Emission Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change,” Cambridge University Press, New York, 2000.
[13] G. A. Meehl, T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, A. Kitoh, R. Knutti, J. M. Murphy, A. Noda, S. C. B. Raper, I. G. Watterson, A. J. Weaver and Z.-C. Zhao, “Climate Change 2007: The Physical Science Basis,” In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Global Climate Projections, Cambridge University Press, Cambridge and New York, 2007, pp. 747-846.
[14] M. R. Spiegel, “Schaum’s Outline of Theory and Problems of Statistics,” 2nd Edition, McGraw-Hill, New York, 1992.
[15] H. Goosse, P. Y. Barriat, W. Lefebvre, M. F. Loutre and V. Zunz, “Introduction to Climate Dynamics and Climate Modelling,” 2009. http://stratus.astr.ucl.ac.be/textbook/
[16] G. B. Hedegaard, “Impacts of Climate Change on Air Pollution Levels in the Northern Hemisphere,” Technical Report 240, National Environmental Research Institute, Roskilde, 2007. www.dmu.dk
[17] J. H. Christensen, C. Hewitt, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R. K. Kolli, W.-T. Kwon, R. Laprise, V. Magaa Rueda, L. Mearns, C. G. Menendez, J. Risnen, A. Rinke, A. Sarr and P. Whetton, “Climate Change 2007: The Physical Science Basis,” In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Regional Climate Projections, Cambridge University Press, Cambridge, 2007, pp. 847-940.
[18] R. Vautard and D. Hauglustaine, “Impact of Global Climate Change on Regional Air Quality: Introduction to the Thematic Issue,” Comptes Rendus Geoscience, Vol. 339, No. 11-12, 2007, pp. 703-708. doi:10.1016/j.crte.2007.08.012
[19] P. A. Stott, D. A. Stone and M. R. Allen, “Human Contribution to the European Heatwave of 2003,” Nature, Vol. 432, 2004, pp. 610-614. doi:10.1038/nature03089
[20] J. H. Christensen, “The Danish Eulerian Hemispheric Model—A Three-Dimensional Air Pollution Model Used for the Arctic,” Atmospheric Environment, Vol. 31, No. 24, 1997, pp. 4169-4191. doi:10.1016/S1352-2310(97)00264-1
[21] L. M. Frohn, “A Study of Long-Term Highresolution Air Pollution Modelling,” Ph.D. Dissertation, University of Copenhagen and National Environmental Research Institute, Copenhagen, 2004.
[22] J. Brandt, J. D. Silver, L. M. Frohn, C. Geels, A. Gross, A. B. Hansen, K. M. Hansen, G. B. Hedegaard, C. A. Skjoth, H. Villadsen, A. Zare and J. H. Christensen, “An Integrated Model Study for Europe and North America Using the Danish Eulerian Hemispheric Model with Focus on Intercontinental Transport of Air Pollution,” Atmospheric Environment, Vol. 53, 2012, pp. 156-176. doi:10.1016/j.atmosenv.2012.01.011
[23] G. B. Hedegaard, “Future Air Pollution Levels in the Northern Hemisphere—Sensitivity to Climate Change and Projected Emissions,” Ph.D. Thesis, Aarhus University, Aarhus, 2011.
[24] J. A. Logan, “An Analysis of Ozonesonde Data for the Troposphere: Recommendations for Testing 3-D Models and Development of a Gridded Climatology for Tropospheric Ozone,” Journal of Geophysical Research, Vol. 104, No. D13, 1999, pp. 115-116. doi:10.1029/1998JD100096
[25] D. Simpson, H. Fagerli, J. Jonson, S. Tsyro, P. Wind and J.-P. Touvinen, “Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe, Part I,” Norwegian Meteorological Institute, Unified EMEP Model description EMEP MSC-W, Oslo, 2003.
[26] W. A. H. Asman, L. L. Sensen, R. Berkowicz, K. Granby, H. Nielsen, B. Jensen, E. Runge, C. Lykkelund, S. E. Gryning and A. M. Sempreviva, “Dry Deposition Processes,” Marine Research 35, Danish Environmental Protection Agency, Copenhagen, 1994.
[27] O. Hertel, J. Christensen, E. H. Runge, W. A. H. Asman, R. Berkowicz and M. F. Hovmand, “Development and Testing of a New Variable Scale Pollution Model— ACDEP,” Atmospheric Environment, Vol. 29, No. 11, 1995, pp. 1267-1290. doi:10.1016/1352-2310(95)00067-9
[28] L. M. Frohn, J. H. Christensen, J. Brandt and O. Hertel, “Development of a High Resolution Integrated Nested Model for Studying Air Pollution in Denmark,” Physics and Chemistry of the Earth, Vol. 26, Part B, 2001, pp. 769-774.
[29] L. M. Frohn, J. H. Christensen and J. Brandt, “Development and Testing of Numerical Methods for Two-Way Nested Air Pollution Modelling,” Physics and Chemistry of the Earth, Vol. 27, No. 35, 2002, pp. 1487-1494. doi:10.1016/S1474-7065(02)00151-1
[30] L. M. Frohn, J. H. Christensen and J. Brandt, “Development of a High-Resolution Nested Air Pollution Model: The Numerical Approach,” Journal of Computational Physics, Vol. 179, No. 1, 2002, pp. 68-94. doi:10.1006/jcph.2002.7036
[31] T. Graedel, T. Bates, A. Bouwman, D. Cunnold, J. Dignon, I. Fung, D. Jacob, B. Lamb, J. Logan, G. Marland, P. Middleton, J. Pacyna, M. Placet and C. Veldt, “A Compilation of Inventories of Emissions to the Atmosphere,” Global Biogeochemical Cycles, Vol. 7, No. 1, 1993, pp. 1-26. doi:10.1029/92GB02793
[32] J. Olivier, A. Bouwman, C. van der Maas, J. Berdowski, C. Veldt, J. Bloos, A. Visschedijk, P. Zandveld and J. Haverlag, “Description of EDGAR Version 2.0: A Set of Global Emission Inventories of Greenhouse Gases and Ozone-Depleting Substances for All Anthropogenic and Most Natural Sources on a Per Country Basis and on 1 Degree × 1 Degree Grid,” National Institute for Public Health and the Environment (RIVM), Bilthoven, 1996.
[33] V. Vestreng, “Emission Data Reported to UNECE/ EMEP: Evaluation of the Spatial Distribution of Emission,” MSC-W Status Report, Meteorological Synthesizing Centre—West, Oslo, 2001.
[34] A. Guenther, C. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor and P. Zimmerman, “A Global-Model of Natural Volatile Organic-Compound Emissions,” Journal of Geophysical Research, Vol. 100, No. D5, 1995, pp. 8873-8892. doi:10.1029/94JD02950
[35] A. H. Goldstein and I. E. Galbally, “Known and Unexplored Organic Constituents in the Earths Atmosphere,” Environmental Science & Technology, Vol. 41, No. 5, 2007, pp. 1514-1521. doi:10.1021/es072476p
[36] G. B. Hedegaard, “Air Pollution—From a Local to a Global Perspective,” Polyteknisk Forlag, Lyngby, 2009, pp. 163-174.
[37] A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer and C. Geron, “Estimates of Global Terrestrial Isoprene Emissions Using MEGAN (Model of Emissions of Gases and Aerosols from Nature),” Atmospheric Chemistry and Physics, Vol. 6, No. 11, 2006, pp. 3181-3210. doi:10.5194/acp-6-3181-2006
[38] A. W. Rollins, A. Kiendler-Scharr, J. L. Fry, T. Brauers, S. S. Brown, H.-P. Dorn, W. P. Dube, H. Fuchs, A. Mensah, T. F. Mentel, F. Rohrer, R. Tillmann, R. Wegener, P. J. Wooldridge and R. C. Cohen, “Isoprene Oxidation by Nitrate Radical: Alkyl Nitrate and Secondary Organic Aerosol Yields,” Atmospheric Chemistry and Physics, Vol. 9, No. 18, 2009, pp. 6685-6703. doi:10.5194/acp-9-6685-2009
[39] H. Skov, J. Hjorth, C. Lohse, N. R. Jensen and G. Restelli, “Products and Mechanisms of the Reactions of the Nitrate Radical (NO3) with Isoprene, 1,3-Butadiene and 2,3-Dimethyl-1,3-Butadiene in Air,” Atmospheric Environment: Part A. General Topics, Vol. 26, No. 15, 1992, pp. 2771-2783. doi:10.1016/0960-1686(92)90015-D
[40] Y. F. Lam, J. S. Fu and L. J. Mickley, “Impacts of Future Climate Change and Effects of Biogenic Emissions on Surface Ozone and Particulate Matter Concentrations in the United States,” Atmospheric Chemistry and Physics, Vol. 11, No. 10, 2011, pp. 4789-4806. doi:10.5194/acp-11-4789-2011
[41] A. Arneth, R. K. Monson, G. Schurgers, U. Niinemets and P. I. Palmer, “Why Are Estimates of Global Terrestrial Isoprene Emissions So Similar (and Why Is This Not so for Monoterpenes)?” Atmospheric Chemistry and Physics, Vol. 8, No. 16, 2008, pp. 4605-4620.
[42] K. Ashworth, O. Wild and C. N. Hewitt, “Sensitivity of Isoprene Emissions Estimated Using Megan to the Time Resolution of Input Climate Data,” Atmospheric Chemistry and Physics, Vol. 10, No. 3, 2010, pp. 1193-1201. doi:10.5194/acp-10-1193-2010
[43] D. Fowler, M. Amann, R. Anderson, M. Ashmore, P. Cox, M. D. M, D. Derwent, P. Grennfelt, N. Hewitt, O. Hov, M. Jenkin, F. Kelly, P. Liss, M. Pilling, J. Pyle, J. Slingo and D. Stefenson, “Ground-Level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications,” Science Policy Report 15/08, The Royal Society, London, 2008.
[44] K. Murazaki and P. Hess, “How Does Climate Change Contribute to Surface Ozone Change over the United States,” Journal of Geophysical Research, Vol. 111, No. D05301, 2006, 16 pp. doi:10.1029/2005JD005873
[45] S. Wu, L. J. Mickley, E. M. Leibensperger, D. J. Jacob, D. Rind and D. G. Streets, “Effects of 2000-2050 Global Change on Ozone Air Quality in the United States,” Journal of Geophysical Research, Vol. 113, 2008, Article ID: D06302.
[46] H. Liao, Y. Zhang, W.-T. Chen, F. Raes and J. H. Seinfeld, “Effect of Chemistry-Aerosol-Climate Coupling on Predictions of Future Climate and Future Levels of Tropospheric Ozone and Aerosols,” Journal of Geophysical Research, Vol. 114, 2009, Article ID: D10306.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.