Synthesis and Characterization of Triarylamine-Based Block Copolymers by Combination of C-N Coupling and ATRP for Photorefractive Applications


Poly(4-butyltriarylamine)s with t-butyldimethylsilyl terminal protecting group (PBTPA-TBS) with various molecular weights were prepared by C-N coupling polymerization. The resulting precursors were postfunctionalized and subse- quently used as macroinitiators for atom transfer radial polymerization (ATRP) of n-butyl acrylate (n-BA) and ethyl acrylate (EA). Both the polymerization processes were controlled and the polymers were characterized by 1H NMR, gel permeation chromatography (GPC) and thermal properties, which confirmed the successful synthesis of all the poly-mers. The microphase separated behaviors of the poly (4-butyltriarylamine)-block-poly (butyl acrylate) (PBTPA-b-PBA) were examined by AFM in the film showing phase separation structures for all the polymers. The photorefractive property of the composite based on PBTPA-b-PBA block copolymer was evaluated by two-beam coupling experiment. A relative high gain coefficient of 42.7 cm?1 was obtained at the electric field of 31 V/?m.

Share and Cite:

Z. Cao, K. Kousuke Tsuchiy, T. Shimomura and K. Ogino, "Synthesis and Characterization of Triarylamine-Based Block Copolymers by Combination of C-N Coupling and ATRP for Photorefractive Applications," Open Journal of Organic Polymer Materials, Vol. 2 No. 4, 2012, pp. 53-62. doi: 10.4236/ojopm.2012.24008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Y. Lin, G. S. Liou, W. Y. Lee and W. C. Chen, “Poly (triarylamine): Its Synthesis, Properties, and Blend with Polyfluorene for White-Light Electroluminescence,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 45, No. 9, 2007, pp. 1727-1736. doi:10.1002/pola.21940
[2] Y. P. Zou, Y. Zhou, G. L. Wu, Y. F. Li and C. Y. Pan, “Electroluminescent Fluorene-Based Alternating Polymers Bearing Triarylamine or Carbazole Moieties in the Main Chain: Synthesis and Properties,” Journal of Applied Polymer Science, Vol. 111, No. 2, 2009, pp. 978987. doi:10.1002/app.29156
[3] M. Thelakkat, J. Hagen, D. Haarer and H. W. Schmidt, “Poly(triarylamine)s-Synthesis and Application in Electroluminescent Devices and Photovoltaics,” Synthetic Metals, Vol. 102, No. 1-3, 1999, pp. 1125-1128. doi:10.1016/S0379-6779(98)01412-X
[4] D. Wright, U. Gubler, W. E. Moerner, M. S. Declue and J. S. Siegel, “Photorefractive Properties of Poly(siloxane) triarylamine-Based Composites for High-Speed Applications,” The Journal of Physical Chemistry B, Vol. 107, No. 20, 2003, pp. 4732-4737. doi:10.1021/jp027456i
[5] Y. Shirota, T. Kobata and N. Noma, “Starburst Molecules for Amorphous Molecular Materials. 4,4',4"-Tris (N,Ndiphenylamino) Triphenylamine and 4,4',4"-Tris [N-(3methylphenyl)-N-phenylamino] Triphenylamine,” Chemistry Letters, Vol. 18, No. 7, 1989, pp. 1145-1148. doi:10.1246/cl.1989.1145
[6] M. Ishikawa, M. Kawai and Y. Ohsawa, “Synthesis and Properties of Electrically Conducting Polytriphenylamines,” Synthetic Metals, Vol. 40, No. 2, 1991, pp. 231-238. doi:10.1016/0379-6779(91)91778-9
[7] K. Ogino, A. Kanegate, R. Yamaguchi, H. Sato and J. Kurjata, “Oxidative Coupling Polymerization of 4-Methyltriphenylamine,” Macromolecular Rapid Communications, Vol. 20, No. 3, 1999, pp. 103-106. doi:10.1002/(SICI)1521-3927(19990301)20:3<103::AID-MARC103>3.0.CO;2-Q
[8] C. Takahashi, S. Moriya, N. Fugono, H. C. Lee and H. Sato, “Preparation and Characterization Of Poly(4-alkyltriphenylamine) by Chemical Oxidative Polymerization,” Synthetic Metals, Vol. 129, No. 2, 2002, pp. 123128. doi:10.1016/S0379-6779(02)00010-3
[9] K. Tsuchiya, T. Shimomura and K. Ogino, “Preparation of Diblock Copolymer Based on Poly(4-N-Butyl-Triphenylamine) via Palladium Coupling Polymerization,” Polymer, Vol. 50, No. 1, 2009, pp. 95-101. doi:10.1016/j.polymer.2008.10.057
[10] K. Tsuchiya, T. Sakakura and K. Ogino, “Synthesis of Triphenylamine Copolymers and Effect of Their Chemical Structures on Physical Properties,” Macromolecules, Vol. 44, No. 13, 2011, pp. 5200-5208. doi:10.1021/ma200940v
[11] K. Tsuchiya, T. Kikuchi, M. Songeun, T. Shimomura and K. Ogino, “Synthesis of Diblock Copolymer Consisting of Poly (4-butyltriphenylamine) and Morphological Control in Photovoltaic Application,” Polymers, Vol. 3, No. 3, 2011, pp. 1051-1064. doi:10.3390/polym3031051
[12] W. E. Moerner, S. M. Silence, F. Hache and G. C. Bjorklund, “Orientationally Enhanced Photorefractive Effect in Polymers,” Journal of the Optical Society of America B, Vol. 11, No. 2, 1994, pp. 320-330. doi:10.1364/JOSAB.11.000320
[13] L. M. Leung and J. T. Koberstein, “DSC Annealing Study of Microphase Separation and Multiple Endothermic Behavior in Polyether-Based Polyurethane Block Copolymers,” Macromolecules, Vol. 19, No. 3, 1986, pp. 706713. doi:10.1021/ma00157a038
[14] T. E. Patten and K. Matyjaszewski, “Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials,” Advanced Materials, Vol. 10, No. 12, 1998, pp. 901-915. doi:10.1002/(SICI)1521-4095(199808)10:12<901::AID-ADMA901>3.0.CO;2-B
[15] K. Jankova, X. Y. Chen, J. Kops and W. Batsberg, “Synthesis of Amphiphilic PS-b-PEG-b-PS by Atom Transfer Radical Polymerization,” Macromolecules, Vol. 31, No. 2, 1998, pp. 538-541. doi:10.1021/ma9710186
[16] K. Matyjaszewski, B. Goebelt, H. J. Paik and C. P. Horwitz, “Tridentate Nitrogen-Based Ligands in Cu-Based ATRP: A Structure-Activity Study,” Macromolecules, Vol. 34, No. 3, 2001, pp. 430-440. doi:10.1021/ma001181s
[17] Q. Lin, M. Konas, R. M. Davis and J. S. Riffle, “Preparation and Properties of Poly (Alkyl Vinyl Ether-2-ethyl2-oxazoline) Diblock Copolymers,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 31, No. 7, 1993, pp. 1709-1717. doi:10.1002/pola.1993.080310709
[18] A. Kajiwara and K. Matyjaszewski, “Formation of Block Copolymers by Transformation of Cationic Ring-Opening Polymerization to Atom Transfer Radical Polymerization (ATRP),” Macromolecules, Vol. 31, No. 11, 1998, pp. 3489-3493. doi:10.1021/ma971445j
[19] Y. Lee, K. I. Fukukawa, J. Bang, C. J. Hawker and J. K. Kim, “A high Purity Approach to Poly (3-hexylthiophene) Diblock Copolymers,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 46, No. 24, 2008, pp. 8200-8205. doi:10.1002/pola.23091
[20] I. Seiichi, K. Koichi, F. Takashi and N. Jun, “Synthesis and Complexing Ability of Azacrownophanes: The Cyclodextrin Catalysis of the Photochemical Cyclization Reaction,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, Vol. 39, No. 1-2, 2001, pp. 35-40.
[21] T. W. Greene and P. G. M. Wuts, “Protective Groups in Organic Synthesis,” 3rd Edition, John Wiley & Sons Ltd., New York, 1999. doi:10.1002/0471220574
[22] K. Okamoto, T. Nomura, S. H. Park, K. Ogino and H. Sato, “Synthesis and Characterization of Photorefractive Polymer Containing Electron Transport Material,” Chemistry Materials, Vol. 11, No. 11, 1999, pp. 3279-3284. doi:10.1021/cm990351g
[23] W. E. Moerner and S. M. Silence, “Polymeric Photorefractive Materials,” Chemical Reviews, Vol. 94, No. 1, 1994, pp. 127-155. doi:10.1021/cr00025a005
[24] A. K. Nanda and K. Matyjaszewski, “Effect of [PMDE TA]/[Cu(I)] Ratio, Monomer, Solvent, Counterion, Ligand, and Alkyl Bromide on the Activation Rate Constants in Atom Transfer Radical Polymerization,” Macromolecules, Vol. 36, No. 5, 2003, pp. 1487-1493. doi:10.1021/ma0340107
[25] G. Chambard, B. Klumperman and A. L. German, “Effect of Solvent on the Activation Rate Parameters for Polystyrene and Poly (Butyl Acrylate) Macroinitiators in Atom Transfer Radical Polymerization,” Macromolecules, Vol. 33, No. 12, 2000, pp. 4417-4421. doi:10.1021/ma992153g
[26] M. F. García, J. L. de la Fuente, M. Fernández-Sanz and E. L. Madruga, “The Importance of Solvent Polar Character on the Synthesis of PMMA-B-PBA Block Copolymers by Atom Transfer Radical Polymerization,” Polymer, Vol. 42, No. 23, 2001, pp. 9405-9412. doi:10.1016/S0032-3861(01)00514-6
[27] X. S. Wang, N. Luo and S. K. Ying, “Controlled Radical Polymerization of Methacrylates at Ambient Temperature and the Synthesis of Block Copolymers Containing Methacrylates,” Polymer, Vol. 40, No. 14, 1999, pp. 4157-4161. doi:10.1016/S0032-3861(98)00759-9
[28] K. Matyjaszewski and J. Xia, “Atom Transfer Radical Polymerization,” Chemical Reviews, Vol. 101, No. 9, 2001, pp. 2921-2990. doi:10.1021/cr940534g
[29] K. Matyjaszewski, “Mechanistic and Synthetic Aspects of Atom Transfer Radical Polymerization,” Journal of Macromolecular Science: Pure and Applied Chemistry, Vol. 34, No. 10, 1997, pp. 1785-1801. doi:10.1080/10601329708010308
[30] A. Goto and T. Fukuda, “Determination of the Activation Rate Constants of Alkyl Halide Initiators for Atom Transfer Radical Polymerization,” Macromolecular Rapid Communications, Vol. 20, No. 12, 1999, pp. 633-636. doi:10.1002/(SICI)1521-3927(19991201)20:12<633::AID-MARC633>3.0.CO;2-2
[31] K. Ibrahim, B. L?fgren and J. Sepp?l?, “Towards More Controlled Poly (n-butyl Methacrylate) by Atom Transfer Radical Polymerization,” European Polymer Journal, Vol. 39, No. 5, 2003, pp. 939-944. doi:10.1016/S0014-3057(02)00309-9
[32] I. K. Moon, C. S. Choi and N. Kim, “Synthesis and Characterization of a Low-Tg Photorefractive Composite,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 202, No. 1, 2009, pp. 57-62. doi:10.1016/j.jphotochem.2008.11.011
[33] H. N. Giang, K. Kinashi, W. Sakai and N. Tsutsumi, “Photorefractive Composite Based on a Monolithic Polymer,” Macromolecular Chemistry and Physics, Vol. 213, No. 9, 2012, pp. 982-988. doi:10.1002/macp.201100647
[34] J. Ostrauskaite, H. R. Karickal, A. Leopold, D. Haarer and M. Thelakkat, “Poly[bis(triphenylamine) Ether]s with Low Glass Transition Temperatures as Photoconductors in Fast Photorefractive Systems,” Journal of Materials Chemistry, Vol. 12, No. 1, 2002, pp. 58-64. doi:10.1039/b105930k
[35] O. Ostroverkhova and W. E. Moerner, “Oganic Photorefractives: Mechanisms, Materials, and Applications,” Chemical Reviews, Vol. 104, No. 7, 2004, pp. 3267-3314. doi:10.1021/cr960055c

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.