Biocatalytic production of chitosan polymers from shrimp shells, using a recombinant enzyme produced by pichia pastoris


Chitosan has a unique chemical structure with high charge density, reactive hydroxyl and amino groups, and extensive hydrogen bonding. Chitin deacetylase (EC catalyzes the hydrolysis of the N-acetamido groups of N-acetyl-D-glucosamine residues in chitin, converting it to chitosan and releasing acetate. The entire ORF of the CDA2 gene encoding one of the two isoforms of chitin deacetylase from Saccharomyces cerevisiae was cloned in Pichia pastoris. The Tg (Cda2-6xHis)p was expressed at high levels as a soluble intracellular protein after induction of the recombinant yeast culture with methanol, and purified using nickel-nitrilotriacetic acid chelate affinity chromatography, resulting in a protein preparation with a purity of >98% and an overall yield of 79%. Chitin deacetylase activity was measured by a colorimetric method based on the O-phthalaldehyde reagent, which detects primary amines remaining in chitinous substrate after acetate release. The recombinant enzyme could deacetylate chitin, chitobiose, chitotriose and chitotetraose, with an optimum temperature of 50°C and pH 8.0, determined using oligochitosaccharides as the substrates. The recombinant protein was also able to deacetylate its solid natural substrate, shrimp chitin, to a limited extent, producing chitosan with a degree of acetylation (DA) of 89% as determined by Fourier transform infrared spectroscopy. The degree of deacetylation was increased by pre-hydrolysis of crystalline shrimp chitin by chitinases, which increased the deacetylation ratio triggered by chitin deacetylase, producing chito-oligosaccharides with a degree of acetylation of 33%. The results described here open the possibility to use the rCda2p, combined with chitinases, for biocatalytic conversion of chitin to chitosan with controlled degrees of deacetylation. We show herein that the crystalline chitin form can be cleanly produced in virtually quantitative yield if a combined and sequential enzyme treatment is performed.

Share and Cite:

Aguila, E. , Gomes, L. , Andrade, C. , Silva, J. and Paschoalin, V. (2012) Biocatalytic production of chitosan polymers from shrimp shells, using a recombinant enzyme produced by pichia pastoris. American Journal of Molecular Biology, 2, 341-350. doi: 10.4236/ajmb.2012.24035.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Bartnicki-Garcia, S. (1989). The biochemical cytology of chitin and chitosan synthesis in fungi. In: Skjark-Braek, G., Anthonsen, T. and Sandford, P. Eds., Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications, Elsevier, Essex, 23-25.
[2] Deshpande MV. (2005). Chitosan in fungi. In: Dutra, P.K. Ed., Chitin and chitosan - opportunities and challenges. SSM International Publication, Contai, India, 59-68.
[3] Muzzarelli, R. (1994) In vivo biochemical significance of chitin-based medical items. In: Dumitriu, S. Ed., Polymeric Biomaterials. Marcel Dekker, Inc, New York, 179-197.
[4] Di Martino, A., Sittinger, M. and Risbud, M. V. (2005). Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 26, 5983-5990. doi:10.1016/j.biomaterials.2005.03.016
[5] Zhao. Y., Park, R. and Muzzarelli, R. A. A. (2010). Chitin deacetylases: Properties and applications. Marine Drugs, 8, 24-46. doi:10.3390/md8010024
[6] Buranapanitkit, B., Srinilta, V., Ingviga, N., Oungbho, K., Geater, A. and Ovatlarnporn, C. (2004). The efficacy of a hydroxyapatite composite as a biodegradable antibiotic delivery system. Clinical Orthopaedics and Related Research, 424, 244-252. doi:10.1097/01.blo.0000130268.27024.c1
[7] Chang, K. L., Tsai, G., Lee, J. and Fu, W. R. (1997). Heterogeneous N-deacetylation of chitin in alkaline solution. Carbohydrate Research, 303, 327-332. doi:10.1016/S0008-6215(97)00179-1
[8] Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V. and Henrissat, B. (2009). The carbohy-drate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37, 233-238. doi:10.1093/nar/gkn663
[9] Okuyasu, K., Kaneko, S., Hayashi, K. and Mori, Y. (1999). Production of a recombinant chitin deacetylase in the culture medium of Escherichia coli cells. FEBS Letters, 458, 23-26. doi:10.1016/S0014-5793(99)01113-8
[10] Martinou, A., Koutsioulis, D. and Bouriotis, V. (2003). Cloning and expression of a chitin deacetylase gene (CDA2) from Saccharomyces cerevisiae in Escherichia coli. Purification and characterization of the co-balt-dependent recombinant enzyme. Enzyme and Microbial Technology, 32, 757-763. doi:/10.1016/S0141-0229(03)00048-6
[11] Gauthier, C., Clerisse, F., Dommes, J. and Jaspar-Versali, M. F. (2008). Characterization and cloning of chitin deacetylases from Rhizopus circinans. Protein Expression and Purification, 59, 127-137. doi:10.1016/j.pep.2008.01.013
[12] Christodoulidou, A., Briza, P., Ellinger, A., Bouriotis, V. (1999). Yeast ascospore wall assembly requires two chitin deacetylase isozymes. FEBS Letters, 460, 275-279. doi:10.1016/S0014-5793(99)01334-4
[13] Martinou, A., Koutsioulis, D. and Bouriotis, V. (2002). Expression, purification and characterization of a cobalt-activated chitin deacetylase (Cda2p) from Saccharomyces cerevisiae. Protein Expression and Purification, 24, 111-116. doi:10.1006/prep.2001.1547
[14] Martinou, A., Bouriotis V., Stokke B.T. and Varum K.M. (1998) Mode of action of chitin deacetylase from M. rouxii on partially N-acetylated chitosans. Carbohydr. Res. 311, 71–78. doi:10.1016/S0008-6215(98)00183-9
[15] Tsigos, I.; Martinou, A.; Kafetzopoulos, D.; Bouriotis, V. (2000) Chitin deacetylases: New, versatile tools in bio-technology. Trends Biotechnol. 18, 305-312. doi:67-7799(00)01462-1
[16] Blair, D.E.; Hekmat, O.; Schuttelkopf, A.W.; Shrestha, B.; Tokuyasu, K.; Withers, S.G.; van Aalten, D.M.F. (2006). Structure and mechanism of chitin deacetylase from the fungal pathogen Colletotrichum lindemuthianum. Bio-chemistry 45, 9416-9426. doi:10.1021/bi0606694
[17] Blair, D.E.; Schuttelkopf, A.W.; Macrae, J.I.; van Aalten, D.M. (2005). Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proc. Natl. Acad. Sci. USA 102, 15429-10975. doi:10.1073/pnas.0504339102
[18] Pareek, N., Vivekanand, V., Saroj, S., Sharma, A.K., Singh, R.P. (2012). Purification and characterization of chitin deacetylase from Penicillium oxalicum SAEM-51. Carbohydrate Polymers, 87, 1091-1097. doi:10.1016/j.carbpol.2011.08.041
[19] Perrakis, A., Tews, I., Dauter, Z., Oppenheim, A. B.., Chet, I., Wilson, K. S., and Vorgias, C. E. (1994). Crystal structure of a bacterial chitinase at 2.3 ? resolution. Structure, 2, 1169-1180. doi:10.1016/S0969-2126(94)00119-7
[20] Laemmli, K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T7. Nature, 227, 680-685. doi:10.1038/227680a0
[21] Gomes, L. P., Oliveira, C. I. R., da Silva, M. C., Andrade, C. T, Del Aguila, E. M., Silva, J. T. and Paschoalin, V. M. F. (2010). Purifica??o e Caracteriza??o da Quitinase de Uva (Vitis vinifera L. cv Red Globe) para a produ??o de quitosana a partir de quitina de camar?o. Química Nova, 33, 1882-1886. doi:10.1590/S0100-40422010000900012
[22] Percot, A., Viton, C. and Domard, A. (2003). Optimization of chitin extraction from shrimp shells. Biomacro-molecules, 4, 12-18. doi:10.1021/bm025602k
[23] Dorresteijn, R., Berwal, L. G., Zomer, G., de Gooijer, C. D., Wieten, G. and Beuvery, E. C. (1996). Determination of amino acids using O-phthalaldehyde-2-mercaptoeth- anol derivatization. Effect of reaction conditions. Journal of Chromatography A, 724, 159-167. doi:10.1016/0021-9673(95)00927-2
[24] Brugnerotto, J., Lizardi, J., Goycoolea, F. M., Ar-güelles-Monal, W., Desbrières, J. and Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42, 3569-3580. doi:10.1016/S0032-3861(00)00713-8
[25] Shrestha, B., Blondeau, K., Stevens, W. F. and Hegarat, F. L. (2004). Expression of chitin deacetylase from Colleto-trichum lindemuthianum in Pichia pastoris: purification and characterization. Protein Expression and Purification, 38, 196-204. doi:10.1016/j.pep.2004.08.012
[26] Cai, J., Yang, J., Du, Y., Fan, L., Qiu, Y., Li, Y. and Kennedy, J. (2006). Purification and characterization of chitin deacetylase from Scopulariopsis brevicaulis. Car-bohydrate Polymers, 65, 211-217. doi:10.1016/j.carbpol.2006.01.003
[27] Saito, Y., Putaux, J-L., Okano, T., Gail, F. and Chanzy, H. (1997). Structural aspects of the swelling of β chitin in HCl and its conversion into ? chitin. Macromolecules, 30, 3867-3873. doi:10.1021/ma961787
[28] Rusu-Balaita, L., Desbrières, J. and Rinaudo, N. (2003). Formation of a biocompatible polyelectrolyte complex: chitosan-hyaluronan complex stability. Polymer Bulletin 50, 91-98. doi:10.1007/s00289-003-0144-1
[29] Daly, R. and Hearn, M. T. W. (2005). Expression of het-erologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. Journal of Molecular Recognition, 18, 119-138. doi:10.1002/jmr.687
[30] Racusen, D. (1979). Glycoprotein detection in poly-acrylamide gel with thymol and sulfuric acid. Analytical Biochemistry, 99, 474-476. doi:10.1016/S0003-2697(79)80035-4
[31] Tsigos, I. and Bouriotis, V. (1995). Purification and characterization of chitin deacetylase from Colleto-trichum lindemuthianum. Journal of Biological Chemistry, 270, 26286-26291. doi:10.1074/jbc.270.44.26286
[32] Kafetzopoulos, D., Martinou, A. and Bouriotis, V. (1993). Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor roxii. Proceedings of the National Academy of Sciences of the United States of America, 90, 2564-2568. doi:10.1073/pnas.90.7.2564
[33] Martinou, A., Kafetzopoulos, D. and Bouriotis, V. (1995) Chitin deacetylation by enzymatic means: monitoring of deacetylation processes. Carbohydrate Research, 273, 235-242. doi:10.1016/0008-6215(95)00111-6
[34] Gao, X, Katsumoto, T. and Onodera, K. (1995). Purification and characterization of chitin deacetylase from Absidia coerulea. Journal of Biochemistry (Tokyo), 117, 257-263. doi:10.1093/jb/117.2.257
[35] Benson, J. R. and Hare, P. E. (1975). O-phthalaldehyde: fluorogenic detection of primary amines in the picomole range. Comparison with fluorescamine and ninhydrin. Proceedings of the National Academy of Sciences of the United States of America, 72, 619-622. doi:10.1073/pnas.72.2.619
[36] Larionova N.I., Zubaerova, D.K., Guranda, D.T., Pechyonkin, M.A. and Balabushevich, N.G. (2009) Col-orimetric assay of chitosan in presence of proteins and polyelectrolytes by using O-phthalaldehyde. Carbohy-drate Polymers, 75, 724–727. doi:10.1016/j.carbpol.2008.10.009
[37] Tokuyasu, K., Ohnishi-Kameyama, M. and Hayashi, K. (1996). Purification and characterization of extracellular chitin deacetylase from Colletotrichum lindemuthianum. Bioscience, Biotechnology, and Biochemistry, 6, 1598-1603. doi:10.1271/bbb.60.1598
[38] Win, N. N. and W. F. Stevens. 2001. Shrimp chitin as substrate for fungal chitin deacetylase. Applied Microbi-ology and Biotechnology, 57, 334-341. doi:10.1007/s002530100741
[39] Campana-Filho, S. P., de Britto, D., Curti, E., Abreu, F. R., Cardoso, M. B., Battisti, M. V., Sim, P. C., Goy, R. C., Signini, R. and Lavall, R. L. (2007). Extra??o, estruturas e propriedades de α e β-quitina. Química Nova, 30, 644- 650. doi:10.1590/S0100-40422007000300026
[40] Aam, B. B., Heggset, E. B., Norberg, A. L., Sorlie, M., Varum, K. M. and Eijsink, V. G. H. (2010). Production of chitooligosaccharides and their potential applications in medicine. Marine Drugs, 8, 1482-1517. doi:10.3390/md8051482
[41] Yalpani, M. and Pantaleone, D. (1994). An examination of the unusual susceptibility of aminoglycans to enzymatic hydrolysis. Carbohydrate Research, 256, 159-175. doi:10.1016/0008-6215(94)84235-3

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.