Formation of Calcium Carbonate Polymorphs Induced by Living Microalgae

Abstract

Calcium carbonate (CaCO3) occurs in the three polymorphs calcite, aragonite and vaterite. The formation of these crystals in inorganic solutions is influenced by parameters like pH, temperature or impurities. Living freshwater microalgae can also induce the formation of CaCO3 when they live in a suitable environment containing saturated amounts of Ca2+. Through this biologically induced biomineralization only the formation of the polymorph calcite has been reported yet. We investigated the precipitates which have been formed in solutions containing the freshwater microalgae Scenedesmus obliquus and different zinc amounts (0, 3.27 and 6.53 mg Zn2+/l) by XRD and SEM. As references precipitates from the same solutions but without algae were investigated. We could show that the presence of living microalgae has a great influence on the precipitation of calcium carbonate crystals. In algae-containing media without or with a low zinc amount always calcite and aragonite are formed. In the corresponding medium with 6.53 mg Zn2+/l pure aragonite crystals were built. In contrast, in the inorganic, algae-free solutions without zinc, pure calcite is precipitated. Both inorganic solutions with zinc show major calcite precipitation and weak aragonite precipitation. Thus the algae cells advance significantly the formation of aragonite, which is enhanced by the presence of zinc cations in the media. Possible mechanisms are discussed.

Share and Cite:

G. Santomauro, J. Baier, W. Huang, S. Pezold and J. Bill, "Formation of Calcium Carbonate Polymorphs Induced by Living Microalgae," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 4, 2012, pp. 413-420. doi: 10.4236/jbnb.2012.34041.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Ogino, T. Suzuki and K. Sawada, “The Formation and Transformation Mechanism of Calcium Carbonate in Water,” Geochimica et Cosmochimica Acta, Vol. 51, No. 10, 1987, pp. 2757-2767. doi:10.1016/0016-7037(87)90155-4
[2] K. Sawada, “The Mechanisms of Crystallization and Transformation of Calcium Carbonates,” Pure & Applied Chemistry, Vol. 69, No. 5, 1997, pp. 921-928. doi:10.1351/pac199769050921
[3] C. Y. Tai and F.-B. Chen, “Polymorphism of CaCO3 Precipitated in a Constant-Composition Environment,” AIChE Journal, Vol. 44, No. 8, 1998, pp. 1790-1978. doi:10.1002/aic.690440810
[4] J. Chen and L. Xiang, “Controllable Synthesis of Calcium Carbonate Polymorphs at Different Temperatures,” Powder Technology, Vol. 189, No. 1, 2009, pp. 64-69.
[5] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallographica, Vol. A32, No. 5, 1976, pp. 751-767.
[6] H. Roques and A. Girou, “Kinetics of the Formation Conditions of Carbonate Tartars,” Water Research, Vol. 5, No. 11, 1974, pp. 907-920. doi:10.1016/0043-1354(74)90105-5
[7] Y. Kitano, N. Kanamori and S. Yoshioka, “Adsorption of Zinc and Copper Ions on Calcite and Aragonite and Its Influence on the Transformation of Aragonite to Calcite,” Geochemical Journal, Vol. 10, No. 4, 1976, pp. 175-179. doi:10.2343/geochemj.10.175
[8] J. M. Zachara, J. A. Kittrick and J. B. Harsh, “The Mechanism of Zn2+ Adsorption on Calcite,” Geochimica et Cosmochimica Acta, Vol. 52, No. 9, 1988, pp. 2281-2291. doi:10.1016/0016-7037(88)90130-5
[9] F. C. Meldrum, “Calcium Carbonate in Biomineralisation and Biometric Chemistry,” International Materials Reviews, Vol. 48, No. 3, 2003, pp. 187-224. doi:10.1179/095066003225005836
[10] D. Ren, Q. Feng and X. Bourrat, “Effects of Additives and Templates on Calcium Carbonate Mineralization in Vitro,” Micron, Vol. 42, No. 3, 2011, pp. 228-245. doi:10.1016/j.micron.2010.09.005
[11] W. Hou and Q. Feng, “Morphology and Formation Mechanism of Vaterite Particles Grown in Glycine-Containing Aqueous Solutions,” Materials Science and Engineering, Vol. C26, No. 4, 2006, pp. 644-647. doi:10.1016/j.msec.2005.09.098
[12] F. Manoli and E. Dalas, “Calcium Carbonate Crystallization in the Presence of Glutamic Acid,” Journal of Crystal Growth, Vol. 222, No. 1, 2001, pp. 293-297. doi:10.1016/S0022-0248(00)00893-9
[13] H. Matahwa, V. Ramiah and R. D. Sanderson, “Calcium Carbonate Crystalliza-tion in the Presence of modified Polysaccharides and linear Polymeric Additives,” Journal of Crystal Growth, Vol. 310, No. 21, 2008, pp. 4561- 4569. doi:10.1016/j.jcrysgro.2008.07.089
[14] M. Dittrich, P. Kurz and B. Wehrli, “The Role of Autotrophic Picocyanobacteria in Calcite Precipitation in an Oligotrophic Lake,” Geomicrobiology Journal, Vol. 21, No. 1, 2004, pp. 45-53. doi:10.1080/01490450490253455
[15] M. Dittrich and M. Obst, “Are Picoplankton Responsible for Calcite Precipitation in Lakes?” Ambio, Vol. 33, No. 8, 2004, pp. 559-564.
[16] M. A. Borowitzka, “Calcification in Algae: Mechanisms and the Role of Metabolism,” CRC Critical Reviews in Plant Sciences, Vol. 6, No. 1, 1987, pp. 1-45. doi:10.1080/07352688709382246
[17] C. R. Heath, B. C. S. Leadbeater and M. E. Callow, “Effect of Inhibitors on Calcium Carbonate Deposition Mediated by Freshwater Algae,” Journal of Applied Phycology, Vol. 7, No. 4, 1995, pp. 367-380. doi:10.1007/BF00003794
[18] R. H. Crist, J. R. Martin, D. Carr, J. R. Watson and H. J. Clarke, “Interaction of Metals and Protons with Algae. 4. Ion Exchange vs Adsorption Models and a Reassessment of Scatchard Plots; Ion-Exchange Rates and Equilibria Compared with Calcium Alginate,” Environmental Science & Technology, Vol. 28, No. 11, 1994, pp. 1859-1866. doi:10.1021/es00060a016
[19] E. Kiefer, L. Sigg and P. Schosseler, “Chemical and Spectroscopic Characterization of Algae Surfaces,” Environmental Science & Technology, Vol. 31, No. 3, 1997, pp. 759-764. doi:10.1021/es960415d
[20] C.-P. Huang, C.-P. Huang and A. L. Morehart, “The Removal of Cu(II) Form Dilute Aqueous Solutions by Saccharomyces Cerevisiae,” Water Research, Vol. 24, No. 4, 1990, pp. 433-439. doi:10.1016/0043-1354(90)90225-U
[21] B. Volesky and Z. R. Holan, “Biosorption of Heavy Metals,” Biotechnology Progress, Vol. 11, No. 3, 1995, pp. 235-250. doi:10.1021/bp00033a001
[22] P. Ahuja, R. Gupta and R. K. Saxena, “Zn2+ Biosorption by Oscillatoria anguistissima,” Process Biochemistry, Vol. 34, No. 1, 1999, pp. 77-85. doi:10.1016/S0032-9592(98)00072-7
[23] F. A. Abu Al-Rub, M. H. El-Naas, F. Benyahia and I. Ashour, “Biosorption of Nickel on Blank Alginate Beads, Free and Immobilized Algal Cells,” Process Biochemistry, Vol. 39, No. 11, 2004, pp. 1767-1773. doi:10.1016/j.procbio.2003.08.002
[24] K. Chojnacka, A. Chojnacki and H. Górecka, “Biosorption of Cr3+, Cd2+ and Cu2+ Ions by Blue-Green Algae Spirulina sp.: Kinetics, Equilibrium and the Mechanism of the Process,” Chemosphere, Vol. 59, No. 1, 2005, pp. 75-84. doi:10.1016/j.chemosphere.2004.10.005
[25] R. Gong, Y. Ding, H. Liu, Q. Chen and Z. Liu, “Lead Biosorption and Desorption by Intact and Pretreated Spirulina Maxima Biomass,” Chemosphere, Vol. 58, No. 1, 2005, pp. 125-130. doi:10.1016/j.chemosphere.2004.08.055
[26] L. Deng, Y. Su, H. Su, X. Wang and X. Zhu, “Sorption and Desorption of Lead (II) from Wastewater by Green Algae Cladophora fascicularis,” Journal of Hazardous Materials, Vol. 143, No. 1-2, 2007, pp. 220-225. doi:10.1016/j.jhazmat.2006.09.009
[27] C. M. Monteiro, A. P. G. C. Marques, P. M. L. Castro and F. X. Malcata, “Characterization of Desmodesmus Pleiomorphus Isolated from a Heavy Metal-Comtamined Site: Biosorption of Zinc,” Biodegradation, Vol. 20, No. 5, 2009, pp. 629-641. doi:10.1007/s10532-009-9250-6
[28] B. N. Tripathi and J. P. Gaur, “Physilogical Behavior of Scenedesmus sp. during Ex-posure to Elevated Levels of Cu and Zn and after Withdrawal of Metal Stress,” Protoplasma, Vol. 229, No. 1, 2006, pp. 1-9. doi:10.1007/s00709-006-0196-9
[29] Y. P. Ting, F. Lawson and I. G. Prince, “Uptake of Cadmium and Zinc by the Alga Chlorella vulgaris: Part 1. Individual Ion Species,” Biotechnology and Bioengineering, Vol. 34, No. 7, 1989, pp. 990-999. doi:10.1002/bit.260340713
[30] G. Santomauro, V. Srot, B. Bussmann, P. A. van Aken, F. Brümmer, H. Strunk and J. Bill, “Biomineralization of Zinc-Phosphate-Based Nano Needles by Living Microalgae,” Journal of Biomaterials and Nanobio-technology, Vol. 3, No. 3, 2012, pp. 362-370. doi:10.4236/jbnb.2012.33034
[31] A. M. Hartley, W. A. House, M. E. Callow and B. S. C. Leadbeater, “The Role of a Green Alga in the Precipitation of Calcite and the Coprecipitation of Phosphate in Freshwater,” Internationale Revue gesamten Hydrobiologie, Vol. 80, No. 3, 1995, pp. 385-401. doi:10.1002/iroh.19950800302

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.