Differentiation of human epidermis-derived mesenchymal stem cell-like pluripotent cells into neural-like cells in culture and after transplantation

DOI: 10.4236/scd.2012.24019   PDF   HTML     3,708 Downloads   6,350 Views   Citations


Skin is the largest organ of the human body and a possible source of stem cells for research and cell-based therapy. We have isolated a population of mesenchymal stem cell-like pluripotent cells from human epidermis, termed human (h) EMSCPCs. This preliminary study tested if these hEMSCPCs can be induced to differentiate into neural-like cells. Human EMSCPCs were first cultured for four to seven days in a serum-free neural stem cell (NSC) medium for pre-induction. During pre-induction, hEMSCPCs coalesced into dense spheres that resembled neural rosettes. In the presence of a conditioned differentiation medium, pre-induced cells took on the morphological characteristics of neural cells, including slender projections with inflated or claw-like ends that contacted the soma or projections of other cells as revealed by confocal microscopy. Moreover, these differentiating cells expressed the neural-specific markers β-III tubulin, MAP2, GFAP, and synapsin I as evidenced by immunocytochemistry. Both pre-induced hEMSCPCs and uninduced hEMSCPCs were labeled with CM-DiI and transplanted into the vitreous cavities of nude mice. Transplanted cells were examined four weeks later in frozen eyeball sections by immunofluorescence staining, which demonstrated superior retinal migration and neural differentiation of pre-induced cells. Our study is the first to demonstrate that hEMSCPCs possess the capacity to differentiate into neural-like cells, suggesting potential uses for the treatment of retinal diseases such as age-related macular degeneration.

Share and Cite:

Zhang, M. , Huang, B. , Li, K. , Chen, Z. , Ge, J. , Li, W. , Huang, J. , Luo, T. , Lin, S. , Yu, J. , Wang, W. and Lin, L. (2012) Differentiation of human epidermis-derived mesenchymal stem cell-like pluripotent cells into neural-like cells in culture and after transplantation. Stem Cell Discovery, 2, 141-154. doi: 10.4236/scd.2012.24019.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Jiang, W. (2010) Neurology. 2nd Edition, People’s medical Publishing House, Beijing.
[2] Carsten, R.B. and Jens, C.S. (2004) Therapeutic strategies for neurodegenerative disorders: Emerging clues from Parkinson’s disease. Biological Psychiatry, 56, 213-216. doi:10.1016/j.biopsych.2003.12.025
[3] John, B.S. (2004) Pharmacotherapeutic approaches to the treatment of Alzheimer’s disease. Clinical Therapeutics, 26, 615-630. doi:10.1016/S0149-2918(04)90064-1
[4] Zhou, J.W. (2010) Recent progress in neurodegenerative disorder research in China. Science China Life Sciences, 53, 348-355. doi:10.1007/s11427-010-0061-0
[5] Peng, L.S. and Li, C.R. (2009) RNA interference and neural degenerative diseases. West China Medical Journal, 21, 1806-1808.
[6] William, J.M., Raymond, T.B., Joao, S., et al. (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: A double-blind, randomised, controlled trial. The Lancet Neurology, 9, 1164-1172. doi:10.1016/S1474-4422(10)70254-4
[7] Wu, J.J., Yu, W.B., Chen, Y., et al. (2010) Intrastriatal transplantation of GDNF-engineered BMSCs and its neuroprotection in Lactacystin-induced Parkinsonian Rat Model. Neurochemical Research, 35, 495-502. doi:10.1007/s11064-009-0086-6
[8] William, J.M., Jill, L.O., Leonard, V., et al. (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: An open-label, phase I trial. The Lancet Neurology, 7, 400-408. doi:10.1016/S1474-4422(08)70065-6
[9] Kerri, S. (2010) Treatment frontiers. Nature, 466, S15-S18. doi:10.1038/nature09476
[10] Jiao, J.W. Embryonic and adult neural stem cell research in China. Science China Life Sciences, 53, 338-341. doi:10.1007/s11427-010-0070-z
[11] Stefano, P., Lucia, Z., Michela, D. and Gianvito, M. (2005) Neural stem cells and their use as therapeutic too in neurological disorders. Brain Research Reviews, 48, 211-219. doi:10.1016/j.brainresrev.2004.12.011.
[12] Gu, Y., Hu, N., Liu, J., et al. (2010) Isolation and differentiation of neural stem/progenitor cells from fetal rat dorsal root ganglia. Science China Life Sciences, 53, 1057-1064. doi:10.1007/s11427-010-4053-x
[13] Keun-Hwa, J., Kon, C., Soon-Tae, L., et al. (2008) Identification of neuronal outgrowth cells from peripheral blood of stroke patients. Annals of Neurology, 63, 312-322. doi:10.1002/ana.21303
[14] Sarugaser, R., Ennis, J., Stanford, W.L. and Gianvito, M. (2009) Isolation, propagation, and characterization of human umbilical cord perivascular cells (HUCPVCs). Methods in Molecular Biology, 482, 269-279. doi:10.1007/978-1-59745-060-7-17
[15] Lin-ya, H., Jia-lin, Y., Fang, L., et al. (2009) Synapse function of neuron-like cells induced from mesenchymal stem cells by Salvia miltiorrhiza. Acta Academiae Medicinae Militaris Tertiae, 31, 144-147. doi:1000-5404(2009)02-0144-04
[16] Shi, Y.F., Hu, G.Z., Su, J.J., et al. (2010) Mesenchymal stem cells: A new strategy for immunosuppression and tissue repair. Cell Research, 20, 510-518. doi:10.1038/cr.2010.44
[17] Wu, L., Chen, R.K., Yang, L., et al. (2009) Differentiation of adipose-derived stem cells into nerve stem cells across embryonic layer. Fourth Military Medical University, 30, 70-72. doi:1000-2790(2009)01-0070-03
[18] Stefan, A., Helmut, K., Irina, S., et al. (2004) Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Investigative Ophthalmology & Visual Science, 45, 4251-4255. doi:10.1167/iovs.03-1108
[19] Oscar, H.M. and Angela, N. (2010) Epithelial plasticity, stemness and pluripotency. Cell Research, 20, 1086-1088. doi:10.1038/cr.2010.127
[20] Dengke, K.M., Bonaguidi, M.A., Ming, G.L. and Song, H.J. (2009) Adult neural stem cells in the mammalian central nervous system. Cell Research, 19, 672-682. doi:10.1038/cr.2009.56
[21] Chase, L.G, Lakshmipathy, U, Solchaga, L.A., et al. (2010) A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Research & Therapy, 1, 8. doi:10.1186/scrt8
[22] Raymond, D.L., Shaomei, W., Bin, L., et al. (2007) Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells, 25, 602-611. doi:10.1634/stemcells.2006-0308
[23] Andrew, J.H., Isabel, Z., Henry, H.T., et al. (2009) Human umbilical cord blood-derived mesenchymal stem cells do not differentiate into neural cell types or integrate into the retina after intravitreal grafting in neonatal rats. Stem Cells and Development, 18, 399-409. doi:10.1089/scd.2008.0084
[24] Isabel, Z., Andrew, J.H., Faisal, A., et al. (2009) Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model. Experimental Neurology, 216, 439-448. doi:10.1016/j.expneurol.2008.12.028
[25] Xue, G.S., Zhang, Y. and Qi, Z.L. (2008) Current research situation of adipose-derived stem cells and its application in tissue engineering. Journal of Tissue Engineering and Reconstructive Surgery, 4, 174-176.
[26] Hideo, O., Ariane, R., Ce’cile, K., et al. (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell, 104, 233-245. doi:10.1016/S0092-8674(01)00208-2
[27] Jean, G.T., Mahnaz, A., Karl, J.L., et al. (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3, 778-786. doi:10.1038/ncb0901-778
[28] Young, H.E., Steele, T.A., Bray, R.A., et al. (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anatomy & Physiology, 264, 51-62. doi:10.1002/ar.1128
[29] Shi, C. and Cheng, T. (2003) Effects of acute wound environment on the neonatal dermal multipotent cells. Cells Tissues Organs, 175, 177-185. doi:10.1159/000074939
[30] Shih, D.T. (2005) Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells, 23, 1012-1025. doi:10.1634/stemcells.2004-0125
[31] Jean, G.T., Ian, A.M., Darius, B. and Freda, D.M. (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells, 23, 727-737. doi:10.1634/stemcells.2004-0134
[32] Karl, J.L. Fernandes, I.A. McKenzie, Pleasantine, M. et al. (2004) A dermal niche for multipotent adult skinderived precursor cells. Nature Cell Biology, 6, 1082-1093. doi:10.1038/ncb1181
[33] Yasuyuki, A., Lingna, L., Kensei, K. and Robert, M.H. (2004) Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle, 7, 1865-1869. doi:10.4161/cc.7.12.6056
[34] Yasuyuki, A., Lingna, L., Kensei, K., Sheldon, P. and Robert, M.H. (2005) Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proceedings of the National Academy of Sciences, 102, 5530-5534. doi:10.1073/pnas.0501263102
[35] Yasuyuki, A., Lingna, L., Raul, C., et al. (2005) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proceedings of the National Academy of Sciences, 102, 17734-17738. doi:10.1073/pnas.0508440102
[36] Patrizia, T., Jeff, W.M., Maria, G.B., et al. (2006) Brain engraftment and therapeutic potential of stem/progenitor cells derived from mouse skin. The Journal of Gene Medicine, 8, 506-513. doi:10.1002/jgm.866
[37] So, P.L. and Epstein, E.H. (2004) Adult stem cells: Capturing youth from a bulge. Trends in Biotechnology, 22, 493-496. doi:10.1016/j.tibtech.2004.08.007
[38] Morasso, M.I. and Omic-Canic, M. (2005) Epidermal stem cells: The cradle of epidermal determination, differentiation and wound healing. Biology of the Cell, 97, 173-183. doi:10.1042/BC20040098
[39] Huang, B., Li, K.J., Yu, J., et al. (2011) Generation of Human epidermis-derived mesenchymal stem cell-like pluripotent cells and their reprogramming in mouse chimeras. http://precedings.nature.com/documents/6016/version/1
[40] Yamamoto, N., Higashi, S. and Toyama, K. (1997) Stop and branch behaviors of geniculocortical axons: A timelapse study in organotypic cocultures. The Journal of Neuroscience, 17, 3653-3663.
[41] Cai, Q., Ji, M., Zhang, J., et al. (2011) Comparative study on glutamatergic synaptic connections in rat striatum with laser scanning confocal microscopy and electron microscopy. Chinese Journal of Histochemistry and Cytochemistry, 20, 236-240.
[42] Matsubayashi, Y., Iwai, L. and Kawasaki, H. (2008) Fluorescent double-labeling with carbocyanine neuronal tracing and immunohistochemistry using a cholesterol-specific detergent digitonin. Journal of Neuroscience Methods, 174, 71-81. doi:10.1016/j.jneumeth.2008.07.003
[43] Ian, A.M., Jeff, B., Jean, G.T., et al. (2006) Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. Journal of Neuroscience Methods, 26, 6651-6660. doi:10.1523/JNEUROSCI.1007-06.2006
[44] Karl, J.L., Fernandes, N.R., Kobayashi, C.J. et al. (2006) Analysis of the neurogenic potential of multipotent skin-derived precursors. Experimental Neurology, 201, 32-48. doi:10.1016/j.expneurol.2006.03.018
[45] Jeff, B., Joseph, S.S., Liu, J., et al. (2007) Skin-derived Precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. Journal of Neuroscience Methods, 27, 9545-9559. doi:10.1523/JNEUROSCI.1930-07.2007
[46] Karl, J.L., Jean, G.T. and Freda, D.M. (2008) Multipotent skin-derived precursors: Adult neural crest-related precursors with therapeutic potential. Philosophical Transactions of the Royal Society B, 363, 185-198. doi:10.1098/rstb.2006.2020
[47] Jean-Francois, L., Jeffrey, A.B., Yan, C., et al. (2009) Skin-derived precursors differentiate into skeletogenic cell types and contribute to bone repair. Stem Cells and Development, 18, 893-905. doi:10.1089/scd.2008.0260
[48] Jeffrey, B., Maryline, P., Olena, M., et al. (2009) SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell, 5, 610-623. doi:10.1016/j.stem.2009.10.019
[49] Hiroyuki, J., Olena, M., Jones, K.L., et al. (2010) Convergent genesis of an adult neural crest-like dermal stem cell from distinct developmental origins. Stem Cells, 28, 2027-2040. doi:10.1002/stem.525
[50] Yasuyuki, A., Lingna, L., Kensei, K. and Robert, M.H. (2010) Embryonic development of hair follicle pluripotent stem (hfPS) cells. Medical Molecular Morphology, 43, 123-127. doi:10.1007/s00795-010-0498-z
[51] Yasuyuki, A., Kensei, K., Robert, M.H. (2010) The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine. Journal of Dermatological Science, 60, 131-137. doi:10.1016/j.jdermsci.2010.09.007
[52] Fang, L., Aisada, U., Hiroaki, K., et al. (2010) The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla. Cell Cycle, 10, 830-839. doi:10.4161/cc.10.5.14969
[53] Florian, H., Wolf, C.P., David, A., et al. (2009) Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. Journal of Anatomy, 214, 759-767. doi:10.1111/j.1469-7580.2009.01065.x
[54] Peng-Han, S., Tung-Cheng, W., Zong-Ruei, W., et al. (2011) The expression of nestin delineates skeletal muscle differentiation in the developing rat esophagus. Journal of Anatomy, 218, 311-323. doi:10.1111/j.1469-7580.2010.01331.x.
[55] Svachovaa, H., Pour, L., Sana, J., et al. (2011) Stem cell marker nestin is expressed in plasma cells of multiple myeloma patients. Leukemia Research, 35, 1008-1013. doi:10.1016/j.leukres.2011.03.001
[56] Frederiksen, K. and McKay, R.D.G. (1988) Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. The Journal of Neuroscience, 8, 1144-l151.
[57] Yvan, A., Jean-Guy, V., Jean-Francois, B., et al. (2001) Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Experimental Neurology, 170, 48-62. doi:10.1006/exnr.2001.7691
[58] Jahan, A., Saskia, F., Anli, Z. and Melissa, F. (2010) Characterization of neural stem/progenitor cells expressing VEGF and its receptors in the subventricular zone of newborn piglet brain. Neurochemical Research, 35, 1455-1470. doi:10.1007/s11064-010-0207-2
[59] Chanchai, B., Kerstin, K., Sombat B., et al. (2011) Fibrosis and evidence for epithelial-mesenchymal transition in the kidneys of patients with staghorn calculi. British Journal of Urology International, 107, 1847. doi:10.1111/j.1464-410X.2011.10350.x

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.