Site Productivity of Clone and Seed Raised Plantations of Eucalyptus urophylla and Eucalyptus grandis in Southeast Mexico

DOI: 10.4236/ojf.2012.24028   PDF   HTML     4,119 Downloads   6,628 Views   Citations


The relationship between soil variables and forest productivity of Eucalyptus urophylla (Eu) and E. grandis (Eg) was studied in commercial forest plantations (CFP) in Huimanguillo, Tabasco, Mexico. The group of Eu included seed and clone raised plantations and the Eg group included only seed raised plantations. Tree measurements and soil sampling were carried out at 56 500-m2 plots. Two soil depths (0 - 20 and 20 - 40 cm) were sampled and analyzed for physical and chemical properties. Site Index (SI), calculated at year 14 was used as indicator of forest productivity. Simple correlation, multiple and second order regressions were used to test the effect of soil variables on productivity. Results showed that mean annual increments (MAI) of Eu and Eg were comparable to other regions of the world reaching 49 m3·ha-1·y-1 across a range of low to high soil fertility gradient (15 to 80 m3·ha-1·y-1). For both species, regardless of the production method (seed or clone), soil texture was the most relevant variable to explain variation in productivity. Eu productivity was correlated to exchangeable Mg (0.3) and Al (0.3) in the 0 - 20 cm soil depth and CEC (0.4) and exchangeable Al (0.6) in the 20 - 40 cm soil depth. Compared to clone plantations, seed plantations showed higher correlations between soils properties and productivity. Aluminum saturation was negatively related to Eg productivity. The highest correlation between soil and productivity were found for Eg, with soil P-availability and aluminum saturation explaining 82 and 85% of the variation, respectively. This works shows that low fertility soils, previously used as pasturelands can be productive for forest plantation purposes and contribute to carbon sequestration.

Share and Cite:

Pérez-Sandoval, R. , Gómez-Guerrero, A. , Fierros-González, A. & Horwath, W. (2012). Site Productivity of Clone and Seed Raised Plantations of Eucalyptus urophylla and Eucalyptus grandis in Southeast Mexico. Open Journal of Forestry, 2, 225-231. doi: 10.4236/ojf.2012.24028.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Acosta, B., Márquez, O., Mora, E., García, V., & Hernández, R. (2005). Uso del método de análisis de componentes principales para la evaluación de la relación suelo productividad en Eucalyptus spp. Forestal Latinoamericana, 37, 17-44.
[2] Almeida, A. C., Landsberg, J. J., Sands, P. J., Ambrogi, M. S., Fonseca, S., Barddal, S. M., & Bertolucci, F. L. (2004). Needs and opportunities for using a process based productivity model as a practical tool in Eucalyptus plantations. Forest Ecology and Management, 193, 167-177. doi:10.1016/j.foreco.2004.01.044
[3] Almeida, A. C., Siggins, A., Batista, T. R., Beadle, C., Fonseca, S., & Loos, R. (2009). Mapping the effect of spatial and temporal variation in climate and soils on Eucalyptus plantation production with 3-PG, a process-based growth model. Forest Ecology and Management, 259, 1730-1740. doi:10.1016/j.foreco.2009.10.008
[4] Ceccon, E., & Martínez-Ramos, M. (1999). Aspectos ambientales referentes al establecimiento de plantaciones de eucalipto de gran escala en áreas tropicales: Aplicación al caso de México. Interciencia, 24, 352-359.
[5] Coops, N. C., Waring, R. H., & Landsberg, J. J. (1998). Assessing forest productivity in Australia and New Zealand using a physiological-based model driven with average monthly weather data and satellite-derived estimates of canopy photosynthetic capacity. Forest Ecology and Management, 104, 113-127. doi:10.1016/S0378-1127(97)00248-X
[6] Delgado, C. C. E., Gómez, G. A., Valdez, L. J. R., de los Santos, P. H., Fierros, G. A. M., & Horwath, R. W. (2009). Site index and soil properties in young plantations of Eucalyptus grandis and Eucalyptus urophylla in southeastern Mexico. Agrociencia, 43, 61-72.
[7] Diaz-Balteiro, L., & Rodríguez, L. C. E. (2006). Optimal rotations on Eucalyptus plantations including carbon sequestration. A comparison of results in Brazil and Spain. Forest Ecology and Management, 229, 247-258. doi:10.1016/j.foreco.2006.04.005
[8] FAO (1989). FAO-UNESCO Soil Map of theWorld (Revised Legend). Reprint of FAO World Soil Resources Report 60. Technical Paper No. 20.
[9] Fisher, R. F., & Binkley, D., (2000). Ecology and management of forest soils. New York: Wiley.
[10] García-G, R., Gómez, A., López, U. J., Vargas, H. J., & Horwath, W. R. (2004). Tree growth and δ13C among populations of Pinus greggii Engelm. at two contrasting sites in central Mexico. Forest Ecology and Management, 198, 237-247. doi:10.1016/j.foreco.2004.04.007
[11] Geissen, V., Sánchez, H. R., Kampichler, C., Ramos, R. R., Sepulveda, L.A., Ochoa, G. S., de Jong, B. H. J., Huerta, L. E., & Hernández, D. S. (2009). Effects of land-use change on some properties of tropical soilsAn example from Southeast Mexico. Geoderma, 151, 87-97. doi:10.1016/j.geoderma.2009.03.011
[12] Gomez, A., Powers, R. F., Singer, M. J., & Horwath, W. R. (2002). Soil compaction effects on growth of young ponderosa pine following litter removal in California’s Sierra Nevada. Soil Science Society of America Journal, 66, 1334-1343. doi:10.2136/sssaj2002.1334
[13] Gómez-Tejero, J., De los Santos-Posadas, H., Fierros-González, A., & Valdez-Lazalde, R. (2009). Modelos de crecimiento en altura dominante para Eucalyptus grandis Hill ex Maiden y E. urophylla S. T. Blake en Oaxaca, México. Revista Fitotecnia Mexicana, 32, 161169.
[14] Gon?alves, J. L. M., Barros, N. F., Nambiar, E. K. S., & Novais, R. F. (1997). Soil and stand management for short-rotation plantations. In: E. K. S. Nambiar, & A. G. Brown (Eds.), Management of soil, nutrients and water in tropical plantations forests (pp. 379-417). Canberra: ACIAR Monograph 43.
[15] Grigal, D. F. (2000). Effects of extensive forest management on soil productivity. Forest Ecology and Management, 138, 167-185. doi:10.1016/S0378-1127(00)00395-9
[16] Henri, C. J. (2001). Soil-site productivity of Gmelina arborea, Eucalyptus urophylla and Eucalyptus grandis forest plantations in western Venezuela. Forest Ecology and Management, 144, 255-264. doi:10.1016/S0378-1127(00)00390-X
[17] Hubbard, R. M., Stape, J., Ryan, M. G., Almeida, A. C., & Rojas, J. (2010). Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. Forest Ecology and Management, 259, 1714-1721. doi:10.1016/j.foreco.2009.10.028
[18] International Tropical Timber Organization (2009). Encouraging industrial forest plantations in the tropics. Technical Series, 33, 143.
[19] Laclau, J. P., Almeida, J. C. R., Gon?alves, J. L. M., Saint-André, L., Ventura, M., Ranger, J., Moreira, R. M., & Nouvellon, Y. (2009). Influence of nitrogen and potassium fertilization on leaf life span and allocation of above-ground growth in Eucalyptus plantations. Tree Physiology, 29, 111-124. doi:10.1093/treephys/tpn010
[20] Laffan, M. D. (1994). A methodology for assessing and classifying site productivity and land suitability for eucalypt plantations in Tasmania. Tasforests, 6, 61-67.
[21] Lima, A. M. N., Silva, I. R., Neves, J. C. L., Novais, R. F., Barros, N. F., Mendonca, E. S., Smyth, T. J., Moreira, M. S., & Leite, F. P. (2006). Soil organic carbon dynamics following afforestation of degraded pastures with Eucalyptus in southeastern Brazil. Forest Ecology and Management, 235, 219-231. doi:10.1016/j.foreco.2006.08.331
[22] Lugo, A. E., Brown, S., & Chapmanan, J. (1988). Analytical review of production rates and stemwood biomass of tropical forest plantations. Forest Ecology and Management, 23, 179-200. doi:10.1016/0378-1127(88)90081-3
[23] Norma Oficial Mexicana (2001). Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreos y análisis. Diario Oficial de la Federación del 14 de febrero de 2001. URL (last checked 26 June 2012).
[25] Onyekwelu, J. C., Stimm, B., & Evans, J. (2011). Review Plantation Forestry. In Günter et al. (Ed.), Tropical Forestry 8: Silviculture in the Tropics (pp. 399-454). Berlin: Springer-Verlag.
[26] Pagano, M. C., Bellote, A. F., & Scotti, M. R. (2009). Aboveground nutrient components of Eucalyptus camaldulensis and E. grandis in semiarid Brazil under the nature and the mycorrhizal inoculation conditions. Journal of Forestry Research, 20, 15-22. doi:10.1007/s11676-009-0003-5
[27] Rodríguez, R., Real, P., Espinosa, M., & Perry, D. A. (2009). A process-based model to evaluate site quality for Eucalyptus nitens in the bio-bio region of Chile. Forestry, 82, 149-162. doi:10.1093/forestry/cpn045
[28] Ryan, M. G., Stape, J. L., Binkley, D., Fonseca, S., Loos, R. A., Takahashi, E. N., Silva, C. R., Silva, S. R., Hakamada, R. E., Ferreira, J. M., Lima, A. M., Gava, J. L., Leite, F. P., Andrade, H. B., Alves, J. M., & Silva, G. G. C. (2010). Factors controlling Eucalyptus productivity: How water availability and stand structure alter production and carbon allocation. Forest Ecology and Management, 259, 16951703. doi:10.1016/j.foreco.2010.01.013
[29] Sepp?nen, P. (2002). Secuestro de carbono a través de plantaciones de eucalipto en el trópico húmedo. Foresta Veracruzana, 4, 51-58.
[30] Silva, I. R., Novais, R. F., Jham, G. N., Barros, N. F., Gebrim, F. O., Nunes, F. N., Neves, J. C. L., & Leite, F. P. (2004). Responses of eucalypt species to aluminum: The possible involvement of low molecular weight organic acids in the Al tolerance mechanism. Tree Physiology, 24, 1267-1277. doi:10.1093/treephys/24.11.1267
[31] Stape, J. L., Binkley, D., Jacob, W. S., & Takahashi, E. N. (2006). A twin-plot approach to determine nutrient limitation and potential in Eucalyptus plantations al landscape scales in Brazil. Forest Ecology and Management, 223, 1358-1362. doi:10.1016/j.foreco.2005.11.015
[32] Stape, J. L., Binkley, D., & Ryan, M. G. (2004). Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil. Forest Ecology and Management, 193, 17-31. doi:10.1016/j.foreco.2004.01.020
[33] Stape, J. L., Binkley, D., Ryan, M. G., Fonseca, S., Loos, R. A., Takahashi, E. N., Silva, C. R., Silva, S. R., Hakamada, R. E., de Ferreira, J. M. A., Lima, A. M. N., Gava, J. L., Leite, F. P., Andrade, H. B., Alves, J. M., Silva., G. G. C., & Azevedo, M. R. (2010). The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production. Forest Ecology and Management, 259, 1684-1694. doi:10.1016/j.foreco.2010.01.012
[34] Van Wambeke, A. (1992). Soils of the tropics, properties and appraisal. New York: McGraw-Hill, Inc.
[35] Xu, D., Dell, B., Yang, Z., Malajczuk, N., & Gong, M. (2005). Effects of phosphorus application on productivity and nutrient accumulation of a Eucalyptus urophylla Plantation. Journal of Tropical Forest Sciences, 17, 447-461.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.