Nutrient Use Efficiency of Three Fast Growing Hardwood Species across a Resource Gradient


Attitudes regarding traditional energy sources have shifted toward renewable resources. Specifically, short-rotation woody crop supply systems have become more prevalent for biomass and biofuel production. However, a number of factors such as environmental and inherent resource availability can limit tree production. Given the intensified demand for wood biomass production, forest and plantation management practices are focusing on increasing productivity. Fertilizer application, while generally one of the least expensive silvicultural tools, can become costly if application rates exceed nutrient uptake or demand of the trees especially if it does not result in additional biomass production. We investigated the effect of water and varying levels of nitrogen application (56, 112, and 224 kg·N·ha-1·yr-1) on nutrient content, resorption efficiency and proficiency, N:P and the relationship with ANPP, as well as leaf- and canopy-level nutrient use efficiency of nitrogen, phosphorus, and potassium for Populus deltoides, Quercus pagoda, and Platanus occidentalis. P. deltoides and P. occidentalis reached their maximum nitrogen budget with the application of water suggesting old agricultural fields may have sufficient nutrient levels to sustain short-rotation woody crops negating the application of additional nitrogen for these two species. Additionally, for P. deltoides and Q. pagoda application of nitrogen appeared to increase the uptake of phosphorus however, resorption efficiency for these two species were more similar to studies conducted on nutrient poor sites. Nutrient resorption proficiency for all three nutrients and all three species were at levels below the highest rates of nitrogen application. These findings suggest maximum biomass production may not necessarily be tied to maximum nutrient application.

Share and Cite:

Henderson, D. & Jose, S. (2012). Nutrient Use Efficiency of Three Fast Growing Hardwood Species across a Resource Gradient. Open Journal of Forestry, 2, 187-199. doi: 10.4236/ojf.2012.24023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. Biological Sciences, 39, 378-386. doi:10.2307/1311067
[2] Aerts, R. (1996). Nutrient resorption from senescing leaves of perennials: are there general patterns? Journal of Ecology, 84, 597-608. doi:10.2307/2261481
[3] Aerts, R. (1997). Nitrogen partitioning between resorption and decomposition pathways: A trade-off between nitrogen use efficiency and litter decomposability. Oikos, 80, 603-606. doi:10.2307/3546636
[4] Aerts, R. & Berendse, F. (1988). The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Vegetatio, 76, 6369.
[5] Aerts, R., & Chapin III, F. S. (2000). The mineral nutrition of wild plants revisited. A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. doi:10.1016/S0065-2504(08)60016-1
[6] Aerts, R. & de Caluwe, H. (1994). Nitrogen use efficiency of Carex species in relation to nitrogen supply. Ecology, 75, 2362-2372. doi:10.2307/1940890
[7] Albaugh, T. J., Allen, H. L., Dougherty, P. M., & Johnsen, K. H. (2004). Long term responses of loblolly pine to optimal nutrient and water resource availability. Forest Ecology and Management, 192, 3-19. doi:10.1016/j.foreco.2004.01.002
[8] Albaugh, T. J., Allen, H. L., Dougherty, P. M., Kress, L. W., & King, J. S. (1998). Leaf area and aboveand belowground growth responses of loblolly pine to Nutrient and water additions. Forest Science, 44, 317-328.
[9] Allen, C. B., Will, R. E., McGravey, R. C., Coyle, D. R., & Coleman, M. D. (2005). Radiation-use efficiency and gas exchange responses to water and nutrient availability in irrigated and fertilized stands of sweetgum and P. occidentalis. Tree Physiology, 25, 191-200. doi:10.1093/treephys/25.2.191
[10] Allen, C. B., Will, R. E., Sarigumba, T., Jacobson, M. A., Daniels, R. F. & Kennerly, S. A. (2004). Relationships between canopy dynamics and stem volume production of four species receiving irrigation and fertilization. In K. F. Connor (Ed.), Proceedings of the 12th biennial southern silviculture research conference (p. 594), Asheville, 24-28 February 2003.
[11] Allen, H. L. (1987). Forest fertilizers. Journal of Science and Technology for Forest Products and Processes, 85, 37-46.
[12] Allen, H. L., Albaugh, T. J., & Johnsen, K. (2002). Water and nutrient effects on loblolly pine production and stand development on a sandhill site. General. Asheville, NC: Department of Agriculture, Forest Service, Southern Research Station.
[13] Augusto, L., Bakker, M. R., de Lavaissiere, C., Meille, L., & Saur, E. (2009). Estimation of nutrient content of woody plants using allometric relationships: Quantifying the difference between concentration values from the literature and actual. Forest, 82, 463-477.
[14] Axelsson, E., & Axelsson, B. (1986). Changes in carbon allocation patterns in spruce and pine trees following irrigation and fertilization. Tree Physiology, 2, 189-204.
[15] Bekele, A., Hudnall, W. H., & Tiarks, A. E. (2003). Response of densely stocked loblolly pine (Pinus taeda L.) to applied nitrogen and phosphorus. Southern Journal of Applied Forestry, 27, 180-189.
[16] Berendse, F., & Aerts, R. (1987). Nitrogen use efficiency: A biologically meaningful definition? Functional Ecology, 1, 293-296.
[17] Birk, E. M., & Vitousek, P. M. (1986). Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology, 67, 69-79. doi:10.2307/1938504
[18] Blanco, J. A., Imbert, J. B., & Castillo, F. J. (2006). Effects of thinning on nutrient content pools in two Pinus sylvestris forests in the western Pyrenees. Scandinavian Journal of Forest Research, 21, 143150. doi:10.1080/02827580600559726
[19] Blanco, J. A., Imbert, J. B., & Castillo, F. J. (2009). Thinning affects nutrient resorption and nutrient-use efficiency in two Pinus sylvestris stands in the Pyrenees. Journal of Applied Ecology, 19, 682-698. doi:10.1890/1051-0761-19.3.682
[20] Bloom, A. J., Chapin III, F. S., & Mooney, H. A. (1985). Resource limitation in plants—An economic analogy. Annual Review of Ecology, Evolution, and Systematics, 16, 363-392.
[21] Boerner, R. E. J. (1984). Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility. Journal of Applied Ecology, 21, 1029-1040. doi:10.2307/2405065
[22] Boerner, R. E. J. (1985). Foliar nutrient dynamics, growth, and nutrient use efficiency of Hammamelisvirginiana in three forest microsites. Canadian Journal of Botany, 63, 1476-1481. doi:10.1139/b85-204
[23] Bridgham, S. D., Pastor, J., McClaugherty, C. A., & Richardson, C. J. (1995). Nutrient-use efficiency: A litterfall index, a model and testing along a nutrient-availability gradient in North Carolina peatlands. American Naturalist, 145, 1-21. doi:10.1086/285725
[24] Bungart, R., & Hüttl, R. F. (2004). Growth dynamics and biomass accumulation of 8-year-old hybrid clones in a short-rotation plantation on clayey-sandy mining substrate with respect to plant nutrition and water budget. European Journal of Forest Research, 123, 105-115.
[25] Cai, Z., & Bongers, F. (2007). Contrasting nitrogen and phosphorus resorption efficiencies in trees and lianas from a tropical montane rain forest in Xishuangbanna, south-west China. Journal of Tropical Ecology, 23, 115-118. doi:10.1017/S0266467406003750
[26] Calfapietra, C., DeAngelis, P., Gielen, B., Lukac, M., Moscatelli, M., Avino, G., Lagomarsion, A., Polle, A., Ceulemans, R., Mugnozza, G., Hoosbeek, M., & Cotrufo, M. (2007). Increased nitrogen-use efficiency of a short-rotation poplar plantation in elevated CO2 concentration. Tree Physiology, 27, 1153-1163. doi:10.1093/treephys/27.8.1153
[27] Campo, J., Solis, E., & Valencia, M. G. (2007). Litter N and P dynamics in two secondary tropical dry forests after relaxation of nutrient availability constraints.For. Forest Ecology and Management, 252, 33-40. doi:10.1016/j.foreco.2007.06.022
[28] Chang, S. X. (2001). Seedling sweetgum (Liquidambar styraciflua L.) half-sib family response to N and P fertilization: Growth, leaf area, net photosynthesis and nutrient uptake. Forest Ecology and Management, 173, 281-291. doi:10.1016/S0378-1127(02)00007-5
[29] Chapin, F. S., & Kedrowski, R. A. (1983). Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology, 64, 376-391. doi:10.2307/1937083
[30] Chatain, A., Read, J., & Jaffre, T. (2009). Does leaf-level nutrient-use efficiency explain Nothofagu-dominace of some tropical rain forests in New Caledonai? Plant Ecology, 201, 51-66. doi:10.1007/s11258-008-9477-z
[31] Choi, W-J., Chang, S. X., Allen, H. L., Kelting, D. L., & Ro, H. (2005). Irrigation and fertilization effects on foliar and soil carbon and nitrogen isotope ratios in a loblolly pine stand. Forest Ecology and Management, 213, 90-101. doi:10.1016/j.foreco.2005.03.016
[32] Clark III, A., Jordan, L., Schimleck, L., & Daniels, R. F. (2008). Effect of initial planting spacing on wood properties of unthinned loblolly pine at age 21. Journal of Natural Products, 58, 78-83.
[33] Coleman, M. D., Friend, A. L., & Kern, C. C. (2004). Carbon allocation and nitrogen acquisition in a developing populus deltoides plantation. Tree Physiology, 24, 1347-1357. doi:10.1093/treephys/24.12.1347
[34] Cochran, P. H., Newman, R. P., & Barrett, J. W. (1991). Fertilization and spacing effects on growth of planted ponderosa pine. Portland, OR: USDA Forest Service, Pacific Northwest Research Station.
[35] Coyle, D. R., & Coleman, M. D. (2005). Forest production responses to irrigation and fertilization are not explained by shifts in allocation. Forest Ecology and Management, 208, 137-152. doi:10.1016/j.foreco.2004.11.022
[36] Curtis, R. O. (2008). True fir spacing trials: 10-year results. Portland, OR: USDA Forest Service, Pacific Northwest Research Station.
[37] del Arco, J. M., Escudero, A., & Garrido, M. V. (1991). Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology, 72, 701-708. doi:10.2307/2937209
[38] DesRochers, A., van den Driessche, R., & Thomas, B. R. (2006). NPK fertilization at planting of three hybrid poplar clones in the boreal region of Alberta. Forest Ecology and Management, 232, 216-225. doi:10.1016/j.foreco.2006.06.004
[39] Dickman, D. I., Steinbeck, K., & Skinner, T. (1985). Leaf area and biomass in mixed and pure plantations of P. occidentalis and black locust in the Georgia piedmont. Forest Science, 31, 509-517.
[40] Drenovsky, R. E., & Richards, J. H. (2006). Low leaf N and P resorption to nutrient limitation in two desert shrubs. Plant Ecology, 183, 305-314. doi:10.1007/s11258-005-9041-z
[41] Eckstein, R. L., Karlsson, P. S., & Weih, M. (1999). Research review: Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-artic regions. New Phytologist, 143, 177-189. doi:10.1046/j.1469-8137.1999.00429.x
[42] Ellsworth, D. S., & Reich, P. B. (1992). Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments. Functional Ecology, 6, 423435. doi:10.2307/2389280
[43] Escudero, A., del Aroc, J. M., Sanz, I. C., & Ayala, J. (1992). Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia, 90, 80-87. doi:10.1007/BF00317812
[44] Fang, S., Xu, X., Lu, S., & Tang, L. (1999). Growth dynamics and biomass production in short-rotation poplar plantations: 6-year results for three clones at four spacings. Biomass and Bioenergy, 17, 415-425. doi:10.1016/S0961-9534(99)00060-4
[45] Feller, I. C., Whigham, D. F., O’Neill, J. P., & McKee, K. L. (1999). Effects of nutrient enrichment on within-stand cycling in a mangrove forest. Ecology, 80, 2193-2205. doi:10.1890/0012-9658(1999)080[2193:EONEOW]2.0.CO;2
[46] Geyer, W. A., & Melichar, M. W. (1986). Short-rotation forestry research in the United States. Biomass, 9, 125-133. doi:10.1016/0144-4565(86)90116-2
[47] Graciano, C., Goya, J. F., Frangi, J. L., & Guiamet, J. J. (2006). Fertilization with phosphorus increases soil nitrogen absorption in your plants of Eucalyptus grandis. Forest Ecology and Management, 236, 202-210. doi:10.1016/j.foreco.2006.09.005
[48] Hagen-Thorn, A., Varnagiryte, I., Nihlgard, B., & Armolaitis, K. (2006). Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology and Management, 228, 33-39.
[49] Henderson, D. E., & Jose, S. (2005). Production physiology of three fast-growing hardwood species along a soil resource gradient. Tree Physiology, 25, 1487-1494. doi:10.1093/treephys/25.12.1487
[50] Henderson, D. E. & Jose, S. (2010). Biomass production potential of three short rotation woody crop species under varying nitrogen and water availability. Agroforestry Systems, 80, 259-273. doi:10.1007/s10457-010-9283-1
[51] Jokela, E. J., Dougherty, P. M., & Martin, T. A. (2004). Production dynamics of intensively managed loblolly pine stands in the southern United States: A synthesis of seven long-term experiments. Forest Ecology and Management, 192, 117-130. doi:10.1016/j.foreco.2004.01.007
[52] Jokela, E. J., & Martin, T. A. (2000). Effects of ontogeny and soil nutrient supply on production, allocation, and leaf area efficiency in loblolly and slash pine stands. Canadian Journal of Forest Research, 30, 1511-1524. doi:10.1139/x00-082
[53] Jose, S., & Gillespie, A. R. (1996). Aboveground production efficiency and canopy nutrient contents of mixed-hardwood forest communities along a moisture gradient in the central United States. Canadian Journal of Forest Research, 26, 2214-2223.
[54] Jose, S., & Gillespie, A. R. (1997). Leaf area-productivity relationships among mixed-species hardwood forest communities of the central hardwood region. Forest Science, 43, 56-64. doi:10.1139/x26-250
[55] Killingbeck, K. (1984). Nitrogen and phosphorus resorption dynamics of five tree species in a Kansas gallery forest. American Midland Naturalist Journal, 111, 155-164. doi:10.2307/2425554
[56] Killingbeck, K. (1986). Litterfall dynamics and element use efficiency in a Kansas gallery forest. American Midland Naturalist Journal, 116, 180-189. doi:10.2307/2425950
[57] Killingbeck, K. (1993). Inefficient nitrogen resorption in genets of the actinorhizal nitrogen fixing shrub Comptoniaperegrina: physiological ineptitude or evolutionary tradeoff? Oecolgia, 94, 542-549. doi:10.1007/BF00566970
[58] Killingbeck, K. (1996). Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727. doi:10.2307/2265777
[59] King, J. S., Albaugh, T. J., Allen, H. L., & Kress, H. L. (1999). Standlevel allometry in Pinus taeda as affected by irrigation and fertilization. Tree Physiology, 19, 769-778. doi:10.1093/treephys/19.12.769
[60] Knecht, M. F., & Goransson, A. (2004). Terrestrial plants require nutrients in similar proportions. Tree Physiology, 24, 447-460. doi:10.1093/treephys/24.4.447
[61] Koerselman, A., & Meuleman, A. F. (1996). The vegetation ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. doi:10.2307/2404783
[62] Kozovits, A. R., Bustamante, M. M., Garofalo, C. R., Buccis, S., Franco, A. C., Goldstein, G., & Meinzer, F. C. (2007). Nutrient resorption and patterns of litter production and decomposition in a neotropical savanna. Functional Ecology, 21, 1034-1043. doi:10.1111/j.1365-2435.2007.01325.x
[63] Ladanai, S., Agren, G. I., Hyconen, R., & Lundkvist, H. (2006). Nitrogen budgets for scots pine and Norway spruce ecosystems 12 and 7 years after the end of long-term fertilization. Forest Ecology and Management, 2338, 130-140.
[64] Lambers, H., Chapin III, F. S., & Pons, T. L. (1998). Plant physiological ecology. New York, NY: Springer-Verlag New York Inc.
[65] Lathja, K. (1987). Nutrient resorption efficiency and the response to phosphorus fertilization in the desert shrub Larreatridentata (DC.) Cov. Biogeochemistry, 4, 265-276. doi:10.1007/BF02187370
[66] Lee, K. H., & Jose, S. (2003). Soil respiration, fine root production, and microbial biomass in P. deltoides and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185, 263-273. doi:10.1016/S0378-1127(03)00164-6
[67] Lee, K. H., & Jose, S. (2005). Nitrate leaching in P. deltoides and loblolly pine biomass plantations along a nitrogen fertilization gradient. Agriculture, Ecosystems & Environment, 105, 615-623. doi:10.1016/j.agee.2004.08.004
[68] Lee, K. H., & Jose, S. (2006). Nitrogen mineralization in short-rotation tree plantations along a soil nitrogen gradient. Canadian Journal of Forest Research, 36, 1236-1242. doi:10.1139/x06-019
[69] Lockaby, B. G., Clawson, R. G., & Baker, T. (1997). Response of three hardwood species to irrigation and fertilization on an upland site.South. Journal of Applied Physics, 21, 123-129.
[70] Lockaby, B. G., & Conner, W. H. (1999). N:P balance in wetland forests: Productivity across a biogeochemical continuum. Botanical Review, 65, 171-185. doi:10.1007/BF02857626
[71] Lockhart, B. R., Ezell, A. W., Hodges, J. D., & Clatterbuck, W. K. (2006). Using natural stand development patterns in artificial mixtures: A case study with cherrybark oak and sweetgum in east-central Mississippi, USA. Forest Ecology and Management, 222, 202-210. doi:10.1016/j.foreco.2005.09.029
[72] Lugo, A. E., Abelleira, O. J., Collado, A., Viera, C. A., Veles, D. O., Soto, S., Amaro, G., Charon, G., Colon Jr., H., Santans, J., Morales, J. L., Rivera, K., Ortiz, L., Rivera, L., Maldonado, M., Rivera, N., & Vazquez, J. J. (2011). Allometry, biomass, and chemical content of novel African tulip tree (Spathodea campanulata) forests in Puerto Rico. New Forests, 42, 267-283. doi:10.1007/s11056-011-9258-8
[73] May, J. D., Burdette, S. B., Gilliam, F. S., & Adams, M. B. (2005). Interspecific divergence in foliar nutrient dynamics and stem growth in a temperate forest in response to chronic nitrogen inputs. Canadian Journal of Forest Research, 35, 1023-1030. doi:10.1139/x05-036
[74] Millner, J. P., & Kemp P. D. (2012). Foliar nutrient in Eucalyptus species in New Zealand. New Forests, 43, 255-266. doi:10.1007/s11056-011-9279-3
[75] Moscatelli, M. C., Lagomarsino, A., De Angelis, P., & Grego, S. (2008). Shortand medium-term contrasting effects of nitrogen fertilization on C and N cycling in a poplar planation soil. Forest Ecology and Management, 255, 447-454. doi:10.1016/j.foreco.2007.09.012
[76] Nambiar, E. K., & Fife, D. N. (1991). Nutrient translocation in temperate conifers. Tree Physiology, 9, 185-207.
[77] National Oceanic and Atmospheric Administration (2003). URL (last checked 19 June 2003).
[78] Pastor, J., & Bridgham, S. D. (1999). Nutrient efficiency along nutrient availability gradients. Acta Oecologica, 118, 50-58. doi:10.1007/s004420050702
[79] Prietzel, J., Wagoner, G. L., & Harrison, R. B. (2004). Long-term effects of repeated urea fertilization in Douglas-fir stands on forest floor nitrogen pools and nitrogen mineralization. Forest Ecology and Management, 193, 413-426. doi:10.1016/j.foreco.2004.02.006
[80] Pugnaire, F. I., & Chapin III, F. S. (1993). Controls over nutrient resorption from leaves of evergreen Mediterranean species. Ecology, 74, 124-129. doi:10.2307/1939507
[81] Rowe, D. B., Blazich, F. A., & Raper, C. D. (2002). Nitrogen nutrition of hedged stock plants of loblolly Pine. I. tissue nitrogen concentrations and carbohydrate status. New Forests, 24, 53-65. doi:10.1023/A:1020555013964
[82] Saarsalmi, A., Kukkola, M., Moilanen, M., & Arola, M. (2006). Longterm effects of ash and N fertilization on stand growth, tree nutrient status and soil chemistry in a Scots pine stand. Forest Ecology and Management, 235, 116-128. doi:10.1016/j.foreco.2006.08.004
[83] Safou-Matondo, R., Deleporte, P., Laclau, J. P., & Bouillet, J. P. (2005). Hybrid and clonal variability of nutrient content and nutrient use efficiency in Eucalyptus stand in Congo. Forest Ecology and Management, 210, 193-204.
[84] Samuelson, L. J., Johnsen, K., & Stokes, T. (2004a). Production, allocation, and stemwood growth efficiency of Pinus taeda L. in response to 6 years of intensive management. Forest Ecology and Management, 192, 59-70. doi:10.1016/j.foreco.2004.01.005
[85] Samuelson, L. J., Johnsen, K., Stokes, T., & Weinlang, L. (2004b.) Intensive management modifies soil CO2 efflux in a 6-year-old Pinus taeda L. stands. Forest Ecology and Management, 200, 335-345. doi:10.1016/j.foreco.2004.07.002
[86] Samuelson, L., Stokes, T., Cooksey, T., & McLemore III, P. (2001). Production efficiency of loblolly pine and sweetgum in response to four years of intensive management. Tree Physiology, 21, 369-376. doi:10.1093/treephys/21.6.369
[87] SAS Institute (2001). SAS user guide: Statistics. Cary, NC: SAS Institute Inc.
[88] Schilling, E. B., & Lockaby, B. G.(2006). Relationships between productivity and nutrient circulation with two contrasting southeastern US floodplain forests. Wetlands, 26, 181-192. doi:10.1672/0277-5212(2006)26[181:RBPANC]2.0.CO;2
[89] Schlaegel, B. E., & Kennedy, H. E. (1986). Deriving biomass estimations for seven plantation hardwood species. In: D. L. Rockwood (Ed.), Proceedings of the 1985 southern forest biomass workshop (pp. 31-39). Gainesville, 11-14 June 1985.
[90] Schubert, M. R., Rennie, J. C., & Schlarbaum, S. E. (2004). Four pine species grown at four spacings on the eastern highland rim, Tennessee, after 30 years. Asheville, NC: USDA Forest Service, Southern Research Station.
[91] Shelton. M. G., Switzer, G. L., Nelson, L. E., Baker, J. B., & Mueller, C. W. (1982). The development of P. deltoides plantations on alluvial soils. Technical Bulletin, 113, 47.
[92] Singh, B. (1998). Biomass production and nutrient dynamics in three clones of Populus deltoides planted on Indogangetic plains. Plant and Soil, 203, 15-26. doi:10.1023/A:1004388903402
[93] Smith, K., Gholz, H. L., & de Assis Oliveira, F. (1998). Litterfall and nitrogen-use efficiency of plantations and primary forest in the eastern Brazilian Amazon. Forest Ecology and Management, 109, 209220. doi:10.1016/S0378-1127(98)00247-3
[94] Song, C. J., Ma, K. M., Qu, L. Y., Liu, Y., Xu, X. L., Fu, B. J., & Zhong, J. F. (2010). Interactive effects of water, nitrogen and phosphorus on the growth, biomass partitioning and water-use efficiency of Bauhinia faberi seedlings. Journal of Arid Environments, 74, 1003-1012.
[95] Specht, A., & Turner, J. (2006). Foliar nutrient concentrations in mixed-species plantations of subtropical cabinet timber species and their potential as a management tool. Forest Ecology and Management, 233, 324-337. doi:10.1016/j.foreco.2006.05.029
[96] Stape, J. L., Binkley, D. R., & Ryan, M. G. (2008). Production and carbon allocation in a clonal Eucalyptus plantation with water and nutrient manipulations. Forest Ecology and Management, 255, 920930. doi:10.1016/j.foreco.2007.09.085
[97] Sword Sayer, M. A., Goelz, J. C. G., Chambers, J. L., Tang, Z., Dean, T. J., Haywood, J. D., & Leduc, D. J. (2004). Long-term trends in loblolly pine productivity and stand characteristics in response to thinning and fertilization in the West Gulf region. Forest Ecology and Management, 192, 71-96. doi:10.1016/j.foreco.2004.01.006
[98] Tateno, R., & Kawaguchi, H. (2002). Differences in nitrogen use efficiency between leaves from canopy and subcanopy trees. Ecological Research, 17, 695-704. doi:10.1046/j.1440-1703.2002.00526.x
[99] Tuskan, G. A. (1998). Short-rotation woody crop supply systems in the Unites States: What do we know and what do we need to know? Biomass and Bioenergy, 14, 307-315. doi:10.1016/S0961-9534(97)10065-4
[100] USDA, NRCS (2009). The PLANTS database. URL (2 December 2009).
[101] Van Den Driessche, R. (2000). Phsophorus, copper, and zinc supply levels influence growth and nutrition of a young Populustrichocarpa (Tott & Gray) × P. deltoides (Bartr. Ex Marsh) hybrid. New Forests, 19, 143-157. doi:10.1023/A:1006607410673
[102] Vitousek, P. M. (1982). Nutrient cycling and nutrient use efficiency. American Naturalist, 119, 553-572. doi:10.1086/283931
[103] Vitousek, P. M. (1998). Foliar and nutrients, nutrient resorption, and decomposition In Hawaiian Metrosideros Polymorpha. Ecosystems, 1, 401-407. doi:10.1007/s100219900033
[104] Vogel, J. G., & Gower, S. T. (1998). Carbon and nitrogen dynamics of boreal jack pine stands with and without green alder understory. Ecosystems, 1, 386-400. doi:10.1007/s100219900032
[105] Vogt, K. A., Grier, C. C., & Vogt, D. J. (1986). Production, turnover, and nutrient dynamics of aboveand belowground detritus of the world forest. Advances in Ecological Research, 15, 303-377. doi:10.1016/S0065-2504(08)60122-1
[106] Wang, J. P., Jarvis, P. G., & Taylor, C. M. (1991). Par absorption and its relation to above-ground dry matter production of Sitka Spruce. Journal of Applied Ecology, 28, 547-560.
[107] Wang, J. R., Letchford, T., Comeau, P., & Kimmins, J. P. (2000). Aboveand below-ground biomass and nutrient distribution of a paper birch and subalpine fir mixed species stand in the Sub-Boreal Spruce zone of British Columbia. Forest Ecology and Management, 130, 17-26. doi:10.2307/2404567
[108] Wang, J. R., Zhong, A. L., Comeau, T. M., & Kimmins, J. P. (1995). Aboveground biomass and nutrient accumulation in an age sequence of aspen (Populustremuloides) stands in the boreal white and black spruce zone, British Columbia. Forest Ecology and Management, 78, 127-138. doi:10.1016/0378-1127(95)03590-0
[109] Wang, J. R., Zhong, A. L., Simard, S. W., & Kimmins, J. P. (1996). Aboveground biomass and nutrient accumulation in an age sequence of paper birch (Betula papyrifera) in the interior cedar hemlock zone, British Columbia. Forest Ecology and Management, 83, 27-38. doi:10.1016/0378-1127(96)03703-6
[110] Wienand, K. T., & Stock, W. D. (1995). Long-term phosphorus fertilization effects on the litter dynamics of an age sequence of Pinus elliottii plantations in southern Cape of South Africa. Forest Ecology and Management, 75, 135-146. doi:10.1016/0378-1127(95)03528-I
[111] Will, R. E., Munger, G. T., Zhang, Y., & Borders, B. E. (2002). Effects of annual fertilization and complete competition control on current annual increment, foliar development, and growth efficiency of Pinus taeda stands. Canadian Journal of Forest Research, 32, 17281740. doi:10.1139/x02-095
[112] Wilson, A. R., Nzokou, P., G?ney, D., & Kula?, ?. (2012). Growth response and nitrogen use physiology of Fraser fir (Abies fraseri), red pine (Pinus resinosa) and hybrid poplar under amino acid nutrition. New Forests, 1-15. doi:10.1007/s11056-012-9317-9
[113] Wright, I. J., & Westoby, M. (2001). Understanding seedling growth relationships through specific leaf areas and life nitrogen concentration: Generalizations across growth forms and growth irradiance. Oecologia, 127, 21-29. doi:10.1007/s004420000554
[114] Wright, I. J., & Westoby, M. (2003). Nutrient concentration, resorption and lifespan: Leaf traits of Australian sclerophyll species. Functional Ecology, 17, 10-19. doi:10.1046/j.1365-2435.2003.00694.x
[115] Xu, X., & Timmer, V. R. (1999). Growth and nutrition of Chinese fir seedlings exposed to nutrient loading and fertilization. Plant and Soil, 216, 83-91. doi:10.1023/A:1004733714217
[116] Yan, E.-R., Wang, X., & Huang, J. (2006). Shifts in plant nutrient use strategies under secondary forest succession. Plant and Soil, 289, 187-197. doi:10.1007/s11104-006-9128-x
[117] Yuan, Z. Y., & Chen, H. Y. H. (2010). Changes in nitrogen resorption of trembling aspen (Populus tremuloides) with stand development. Plant and Soil, 327, 121.
[118] Yuan, Z. Y., & Li, L. H. (2007). Soils water status influences plant nitrogen use: A case study. Plant and Soil, 301, 303-313. doi:10.1007/s11104-007-9450-y
[119] Zalesny, J. A., Zalesny Jr. R.S., Coyle, D. R., & Hall, R. B. (2007). Growth and biomass of populus irrigated with landfill leachate. Forest Ecology and Management, 248, 143-152. doi:10.1016/j.foreco.2007.04.045
[120] Zalesny, J. A., Zalesny Jr. R. S., Wiese, A. H., Sexton, B. T., & Hall, R. B. (2008). Uptake of macroand micro-nutrients into leaf, woody, and root tissue of Populus after irrigation with landfill leachate. Journal of Sustainable Forestry, 27, 303-327. doi:10.1080/10549810802256262

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.