High-Performance CMOS Current Mirrors: Application to Linear Voltage-to-Current Converter Used for Two-Stage Operational Amplifier

Abstract

This paper presents two schemes of high performance CMOS current mirror, one of them is used for operational tran-sconductance amplifier (OTA) in analog VLSI systems. The linearity, output impedance, bandwidth and accuracy are the most parameters to determine the performance of the current mirror. Here a comparison of two architectures based on same architecture of the amplifier is presented. This comparison includes: linearity, output impedance, bandwidth and accuracy. These two circuits are validated with simulation in technology AMS 0.35 μm. An operational amplifier based on the adapted current mirror is proposed. Its frequency analysis with large bandwidth is validated with the same technology.

Share and Cite:

R. Laajimi and M. Masmoudi, "High-Performance CMOS Current Mirrors: Application to Linear Voltage-to-Current Converter Used for Two-Stage Operational Amplifier," Circuits and Systems, Vol. 3 No. 4, 2012, pp. 311-316. doi: 10.4236/cs.2012.34044.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. H. Li and H. L. Kwork, “The Application of CurrentMode Circuits in the Design of an A/D Converter,” IEEE Canadian Conference on Electrical and Computer Engineering, Vol. 1, 1998, pp. 41-44.
[2] K.-H. Cheng, C.-C. Chen and C.-F. Chung, “Accurate Current Mirror with High Output Impedance,” 8th IEEE International Conference Electronics on Circuits and Systems, Vol. 2, 2001, pp. 565-568.
[3] K.-H. Cheng, T.-S. Chen and C.-W. Kuo, “High Accuracy Current Mirror with Low Settling Time,” Proceedings of the 46th IEEE International Midwest Symposium on Circuits and Systems, Vol. 1, 2003, pp. 189-192.
[4] M. S. Sawant, J. Ramirez-Angulo, A. J. Lopez-Martin and R. G. Carvajal, “New Compact Implementation of a Very High Performance CMOS Current Mirror,” 48th Midwest Symposium on Circuits and Systems, Vol. 1, 2005, pp. 840-842. doi:10.1109/MWSCAS.2005.1594232
[5] J. Ramirez-Angulo, R. G. Carvajal and A. Torralba, “Low Supply Voltage High Performance CMOS Current Mirror with Low Input and Output Voltage Requirements,” IEEE Transactions on Circuits and Systems-II Express Briefs, Vol. 51, No. 3, 2004, pp. 124-129.
[6] A. N. Mohieldin, E. Sánchez-Sinencio and J. SilvaMartínez, “Nonlinear Effects in Pseudo Differential OTAs with CMFB,” IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 50, No. 10, 2003, pp. 762-770.
[7] K. tanno, O. Ishizuka and Z. Tang, “Low Voltage and Low Frequency Current Mirror Using a Two-MOS Subthreshold op-amp,” Electronics Letters, Vol. 32, No. 7, 1996, pp. 605-606.
[8] V. Srinivasan, R. Chawla and P. Haster, “Linear Current to Voltage and Voltage to Current Converters,” 48th Midwest Symposium on Circuits and Systems, Vol. 1, 2005, pp. 675-678.
[9] B. H. Soni and R. N. Dhavse, “Design of Operational Transconductance Amplifier Using 0.35 μm Technology,” International Journal of Wisdom Based Computing, Vol. 1, No. 2, 2011, pp. 28-31.
[10] M. M. Amourach and R. L. Geiger, “Gain and Bandwidth Boosting Techniques for High-Speed Operational Amplifiers,” IEEE International Symposium on Circuits and Systems, Vol. 1, 2001, pp. 232-235.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.