Photoelectrochemical Studies at CdS/PTTh Nanoparticles Interfaces

DOI: 10.4236/msa.2012.310105   PDF   HTML     3,695 Downloads   5,517 Views   Citations


Photo-activities at Inorganic/Organic/Interfaces (IOI) consisting of CdS/ Polyterthiophine (PTTh) assemblies were investigated in nanoparticle suspension and in thin solid film forms. The effects PTTh modifier cause on the photoelec-trochemical behavior of the IOI were investigated using [Fe(CN)6]4- as photoactive hydrated electron donor agent. Results show that the adsorption process of [Fe(CN)6]3- (photolysis product) control the photoactivity outcome of IOI assemblies. CdS/PTTh shows lower heterogeneous photochemical response than native CdS. Native CdS amorphous nanoparticles adsorb more [Fe(CN)6]3- with very steady adsorption /desorption process than the modified ones. The interface activities were explained by analyzing the IOI junctions’ characteristics, such as electron affinity, work function and hole/electrons barrier heights. The aqueous nano-systems retained moderate stability as indicated by the reproducibility of their photocatalytic activities. Both [Fe(CN)6]4- and PTTh contributed to the stability of native CdS surfaces.

Share and Cite:

K. Kasem and N. Zia, "Photoelectrochemical Studies at CdS/PTTh Nanoparticles Interfaces," Materials Sciences and Applications, Vol. 3 No. 10, 2012, pp. 719-727. doi: 10.4236/msa.2012.310105.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. Chen, S. Chen, S. Chen, Y. L. Huang, H. Huang, D. C. Qi, X. Y. Gao, J. Ma, A. T. S. Wee, “Orientation-Con- trolled Charge Transfer at CuPc/F16CuPc Interfaces,” Journal of Applied Physics, Vol. 106, No. 6, 2009, Article ID: 064910. doi:10.1063/1.3225918
[2] T. R Heera and L. Cindrella, “PbS/CoS-Pani Composite Semiconductor Films,” Materials Science in Semiconductor Processing, Vol. 14, No. 2, 2011, pp. 151-156.doi:10.1016/j.mssp.2011.02.002
[3] S. Suresh, A. Pandikumar, S. Murugesan, R. Ramaraj, Samuel Paul Raj, Photovoltaic performance of solid-state solar cells based on ZnO nanosheets sensitized with low-cost metal-free organic dye, Solar Energy 85, 2011, pp. 1787–1793.
[4] M. Hahlin, E. M. Johansson, S. Plogmaker, M. Odelius, P. D. Hagberg, L. Sun, H. Siegbahn and H. Rensmo, “Electronic and Molecular Structures of Organic Dye/TiO2 Interfaces for Solar Cell Applications: A Core Level Photoelectron Spectroscopy Study,” Physical Chemistry Chemical Physics, Vol. 12, No. 7, 2010, pp. 1507-1509.doi:10.1039/b913548k
[5] D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans and P. Heremans, “Nanoimprinted Semiconducting Polymer Films with 50 nm Features and Their Application to Organic Heterojunction Solar Cells,” Nanotechnology, Vol. 19, No. 42, 2008, Article ID: 424016.doi:10.1088/0957-4484/19/42/424016
[6] S. Blumstengel, N. Koch, S. Sadofev, P. Schafer, H. R. Johnson, J. P. Rabe and F. Henneberger, “Room Temperature Ferromagnetism in ZnO Films Due to Defects,” Applied Physics Letters, Vol. 92, No. 19, 2008, Article ID: 193303. doi:10.1063/1.2918089
[7] D. Adams, “Charge Transfer on the Nanoscale: Current Status,” Journal of Physical Chemistry B, Vol. 107, No. 28, 2003, pp. 6668-6674. doi:10.1021/jp0268462
[8] K. G. Thomas and P. V. Kamat, “Chromophore-Functionalized Gold Nanoparticles,” Accounts of Chemical Research, Vol. 36, No. 12, 2003, pp. 888-898. doi:10.1021/ar030030h
[9] P. V. Kamat, “Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles,” Journal of Physical Chemistry B, Vol. 106, No. 32, 2002, pp. 7729- 7244. doi:10.1021/jp0209289
[10] X. L. Hu, G. S. Li and J. C. Yu, “Design, Fabrication and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Applications,” Langmuir, Vol. 26, No. 5, 2010, pp. 3031-3039. doi:10.1021/la902142b
[11] K. Kasem, S. Menges and S. Jones, “Photoelectrochem- ical Studies of Poly[1-(2-aminophenya)pyrrole],” Cana- dian Journal of Chemistry, Vol. 87, 2009, pp. 1-8.
[12] Q. Zhang, T. Wu, X. H. Bu, T. Tran and P. Feng, “Ion Pair Charge-Transfer Salts Based on Metal Chalcogenide Clusters and Methyl Viologen Cations,” Chemistry of Materials, Vol. 20, No. 13, 2008, pp. 4170-4172.
[13] M. Graetzel, “Photoelectrochemical Cells,” Nature, Vol. 414, 2001, pp. 338-342.
[14] K. Kasem and C. Davis, “Photoelectrochemical Studies on Colloidal Copper(I) Oxide/Modified with Some Organic Semiconductors: Incentive for Use of Nanoparticle System,” Bulletin of Materials Science, Vol. 31, No. 7, 2008, pp. 925-929. doi:10.1007/s12034-008-0147-5
[15] S. Kohtani, A. Kudo and T. Sakata, “Pectral Sensitization of a Titania Semiconductor Electrode by Cadmium Sulfide Microcrystals and Its Photoelectrochemical Properties,” Chemical Physics Letters, Vol. 206, No. 1-4, 1993, pp. 166-170. doi:10.1016/0009-2614(93)85535-V
[16] R. Vogel, P. Hoyer and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Wide-Bandgap Semiconductors,” Journal of Physical Chemistry, Vol. 98, No. 12, 1994, pp. 3183- 3187. doi:10.1021/j100063a022
[17] R. Plass, S. Pelet, J. Krueger, M. Gratzel and U. Bach, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells,” Journal of Physical Chemistry B, Vol. 106, No. 31, 2002, pp. 7578-7580. doi:10.1021/jp020453l
[18] L. Peter, K. Wijayantha, D. Riley and J. Waggett, “Band- Edge Tuning in Self-Assembled Layers of Bi2S3 Nanoparticles Used To Photosensitize Nanocrystalline TiO2,” Journal of Physical Chemistry B, Vol. 107, No. 33, 2003, pp. 8378-8381. doi:10.1021/jp030334l
[19] K. Kasem, “Photo-Electrochemical Studies on Aqueous Suspensions of 3-Dodecyl 2-5 Di-ThionylPyrrole/Metal Oxide Photoactive Interface,” Surface and Interface and Analysis, Vol. 43, No. 12, 2011, pp. 1527-1532.doi:10.1002/sia.3747
[20] K. K. Kasem, “Photoelectrochemical Studies on Stationary surface Modified CdSe Electrodes,” Materials Science and Engineering: B, Vol. 65, No. 2, 1999, pp. 127- 134. doi:10.1016/S0921-5107(99)00218-4
[21] K. K. Kasem, “Photo-Electrochemistry at Polymer/Semi- conductor Interface. Characterization of Surface Modified CdS Based Photovoltaic Cells,” Journal of Materials Science, Vol. 34, No. 21, 1999, pp. 5237-5342.doi:10.1023/A:1004772231981
[22] H. Michikazu, K. Takeshi, K. Mutsuko, I. Sigeru, S. Kiyoaki, T. Akira, N. K. Junko and K. Kazunari, “Cu2O as a Photocatalyst for Overall Water Splitting under Visible Light Irradiation,” Chemical Communications, No. 3, 1998, pp. 357-358.
[23] A. Tatarets, I. A. Fedyunyayeva, T. S. Dyubko, Y. A. Povrozin, A. O. Doroshenko, E. Terpetschnig and L. D. Patsenker, “Synthesis of Water-Soluble, Ring-Substituted Squaraine Dyes and Their Evaluation as Fluorescent Probes and Labels,” Analytica Chimica Acta, Vol. 214, 2006, pp. 570-576.
[24] R. A. de Barros, M. C. C. Areias and W. M. de Azevedo, “Conducting Polymer Photopolymerization Mechanism,” Synthetic Metal, Vol. 160, No. 1-2, 2010, pp. 61-64. doi:10.1016/j.synthmet.2009.09.033
[25] Z. H. Han, H. Y. Zhu, S. R. Bulcock and S. P. Ringer, “One-Step Synthesis and Structural Features of CdS/ Montmorillonite Nanocomposites,” Journal of Physical Chemistry B, Vol. 109, No. 7, 2005, pp. 2673-2678. doi:10.1021/jp046541i
[26] D. N. McIlroy, J. Zhang, P. A. Dowben and D. Heskett, “Band Gaps of Doped and Undoped Films of Molecular Icosahedra,” Materials Science and Engineering: A, Vol. 217-218, 1996, pp. 64-68.
[27] K. Kasem and M. Dahn, “Photodissociation of Water Using Colloidal Nanoparticles of Doped Titanium(IV) Oxide Semiconductors for Hydrogen Production,” Current Science, Vol. 99, No. 8, 2010, pp. 1087-1092.
[28] L. S. Roman, I. A. Hummelgen, F. C. Nart, F. C. Peres and E. I. de Sa, “Determination of Electroaffinity and Ionization Potential of Conjugated Polymers via Fowler- Nordheim Tunneling Measurements: Theoretical Formu- lation and Application to Poly(p-phenylenevinylene,” Journal of Chemical Physics, Vol. 105, No. 23, 1998, pp. 10614-10620. doi:10.1063/1.472947
[29] A. Mohammad, G. K. C. Low and R. W. Matthews, “Effects of Common Inorganic Anions on Rates of Photocatalytic Oxidation of Organic Carbon over Illuminated Titanium Dioxide,” Journal of Physical Chemistry, Vol. 94, No. 17, 1990, pp. 6820-6825.doi:10.1021/j100380a051
[30] H. Rubin, D. Arent, B. Humphrey and A. Bocarsly, “Overlayer Formation as a Source of Stability in the N-Type Photoelectrochemical Cell,” Journal of Electrochemical Society, Vol. 134, No. 1, 1987, pp. 93-101. doi:10.1149/1.2100444
[31] K. Tennakone, “The Activation of N-Type Semiconduction in Ferrocyanides and p-Type Semiconduction in Ferricyanides by Interstitial Water,” Journal of Physical C: Solid State Physics, Vol. 16, No. 34, 1983, p. L1193.doi:10.1088/0022-3719/16/34/001
[32] J. Desilvestro, S. Bons, E. Vrachnqu and M. Gratzel, “Electrochemical and FTIR Spectroscopic Characterization of Ferrocyanide-Modified TiO2 Electrodes Designed for Efficient Photosensitization,” Journal of Electroanalytical Chemistry, Vol. 234, No. 2, 1988, pp. 411-422.
[33] W. P. Cheng, C. Huang and Y. C. Chien, “Competitive Adsorption of Ferricyanide and Ferrocyanide On γ-Al2O3 Surface,” Journal of Colloid & Interface Science, Vol. 224, No. 2, 2000, pp. 291-296. doi:10.1006/jcis.1999.6684
[34] C. M. Pharr and P. R. Griffiths, “Infrared Spectroelectrochemical Analysis of Adsorbed Hexacyanoferrate Species Formedduring Potential Cycling in the Ferrocyanide/Fer- ricyanide Redox Couple,” Analytical Chemistry, Vol. 69, No. 22, 1997, pp. 4673-4679. doi:10.1021/ac961120l
[35] T. Lana Villarreal, R. Gómez, M. Neumann-Spallart, N. Alonso-Vante and P. Salvador, “Semiconductor Photo- oxidation of Pollutants Dissolved in Water: A Kinetic Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer. I. Photoelectrochemical Experiments with Polycrystalline Anatase Electrodes under Current Doubling and Absence of Recombination,” Journal of Physical Chemistry B, Vol. 108, No. 39, 2004, pp. 15172-15181. doi:10.1021/jp049447a
[36] G. H. Ma, S.-H. Tang, W. X. Sun, Z. X. Shen, W. M. Huang and J. L. Shi, “Size-Dependent Excited State Properties of CdS Nanocrystals,” Physics Letters A, Vol. 299, No. 5-6, 2002, pp. 581-585. doi:10.1016/S0375-9601(02)00680-1
[37] J. L. Marcos, J. Santos, E. Ferreira, R. R Radovanovic, L. A. Oswaldo and M. G. Emerson, “Enhancement of the Photoelectrochemical Response of Poly(Terthiophenes) by CdS(ZnS) Core-Shell Nanoparticles,” Thin Solid Films, Vol. 517, No. 18, 2009, pp. 5523-5529.doi:10.1016/j.tsf.2009.03.170

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.