TiO2-Polysulfone Beads for Use in Photo Oxidation of Rhodamine B


The nano sized TiO2 has been synthesized by sol gel process. The titaniumisopropaxide diluted in propanol hydrolyzed under acidic condition to form a gel. The solvent from gel pores has been extracted at ambient pressure resulting in nano sized TiO2 crystallites. The crystalline phase of TiO2 could be assigned to anatase structure. An average crystallite size is about 12 nm. The surface area of TiO2 found to be 235 m2/g. The TiO2 nanocrystallites thus produced were blended with polysulphone to form its beads for ease of operation. These beads of TiO2 were used as photo catalyst in conjunction with H2O2 oxidizer in presence of UV light (254 nm) for treating the 50 ppm Rhodamine B aqueous solution. The solution decolorized within 10 minutes resulting in disappearance of absorption peak at around 600 nm in UV spectrometry. The organic entities degrade in about 60 minutes. The beads of nano sized TiO2 could be easily recovered from the treated effluent for further use.

Share and Cite:

S. Ingale, P. Wagh, A. Tripathi, R. Srivastav, I. Singh, R. Bindal and S. Gupta, "TiO2-Polysulfone Beads for Use in Photo Oxidation of Rhodamine B," Soft Nanoscience Letters, Vol. 2 No. 4, 2012, pp. 67-70. doi: 10.4236/snl.2012.24012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Wang, R. Li, Z. Zhang, W. Sun, X. Wang, R. Xu, Z. Xing and X. Zhang, “Degradation of Hazardous Dyes in Wastewater Using Nanometer Mixed Crystal TiO2 Powders under Visible Light Irradiation,” Water Air Soil Pollution, Vol. 189, No. 1-4, 2008, pp. 225-237. doi:10.1007/s11270-007-9570-2
[2] R. Jaina, M. Mathura, S. Sikarwara and A. Mittal, “Removal of the Hazardous Dye Rhodamine B through Photocatalytic and Adsorption Treatments,” Journal of Environmental Management, Vol. 85, No. 4, 2007, pp. 956-964. doi:10.1016/j.jenvman.2006.11.002
[3] H. B. Yin, Y. J. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata and S. Yanagida, “Hydrothermal Synthesis of Nanosize Anatase and Rutile TiO2 Using Amorphous Phase TiO2,” Journal of Materials Chemistry, Vol. 11, No. 6, 2001, pp. 1694-1703. doi:10.1246/cl.2001.334
[4] S. V. Ingale, P. B. Wagh, A. K. Tripathi, A. S. Dudwadkar, S. S. Gamre, P. T. Rao, I. K. Singh and S. C. Gupta, “Photo Catalytic Oxidation of TNT Using TiO2-SiO2 Nano-Composite Aerogel Catalyst Prepared Using Solgel Process,” Journal of Sol-Gel Science & Technology, Vol. 58, No. 3, 2011, pp. 682-688. doi:10.1007/s10971-011-2445-4
[5] Y. Zhao, C. Li, X, Liu, F. Gu, H. Jiang, W. Shao, L. Zhang and Y. He, “Synthesis and Optical Properties of TiO2 Nanoparticles,” Materials Letters, Vol. 61, No. 1, 2007, pp. 79-83. doi:10.1016/j.matlet.2006.04.010
[6] G. Liu, C. Sun, H. Yang, S. Smith, L. Wang, G. Lu (Max) and H. Cheng, “Nanosized Anatase TiO2 Single Crystals for Enhanced Photocatalytic Activity,” Chemical Communications, Vol. 46, No. 5, 2010, pp. 755-757. doi:10.1039/b919895d
[7] D. C. M. Dutoit, M. Schneiderand and A. Baiker, “Titania-Silica Mixed Oxides: I. Influence of Sol-Gel and Drying Conditions on Structural Properties,” Journal of Catalysis, Vol. 153, No. 1, 1995, pp. 165-176. doi:10.1006/jcat.1995.1118
[8] Y.-H. Tseng, H.-Y. Lin, C.-S. Kuo, Y.-Y. Li and C.-P. Huang, “Thermostability of Nano TiO2 and Its Photo Catalytic Activity,” Reaction Kinetics and Catalysis Letters, Vol. 89, No. 1, 2006, pp. 63-69. doi:10.1007/s11144-006-0087-2
[9] C. W. Ma and W. Chu, “Photodegradation Mechanism and Rate Improvement of Chlorinated Aromatic Dye in Non-Ionic Surfactant Solutions,” Water Research, Vol. 35, No. 10, 2001, pp. 2453-2459. doi:10.1016/S0043-1354(00)00522-4

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.