Comparison of Perfusion Weighted Magnetic Resonance Imaging and Single Photon Emission Computed Tomography for Assessment of Cerebrovascular Reserve in Symptomatic Carotid Territory Stenosis

Abstract

Background: Perfusion Weighted Magnetic Resonance Imaging (PW-MRI) and HMPAO Single Photon Emission Computed Tomography (SPECT) are both cerebral perfusion measurement techniques. Imaging before and after acetazolamide administration can assess cerebrovascular reserve in symptomatic haemodynamic cerebrovascular disease. We compared SPECT and PW-MRI parameters in this patient group. Methods: We identified 10 patients with haemody-namically induced symptoms and intra- or extra-cranial arterial stenoses with back-to-back acetazolamide challenge SPECT and PW-MRI, 4 of whom had resting studies. Regions of interest (ROIs) were applied to parameter maps using an ASPECTS template and perfusion parameters expressed relative to contralateral ROIs, giving 118 challenge and 48 resting ROIs. Results: SPECT relative cerebral blood flow (rCBF) correlated with PW-MRI time to peak (TTP) (r = ?0.568), mean transit time (MTT) (r = ?0.317), regional cerebral blood flow (rCBF) (r = 0.299) and cerebral blood volume (CBV) (r = 0.224). Bias between SPECT and PW-MRI rCBF was small (?0.018) with wide limits of agreement and a systematic measurement error. Pre- to post-acetazolamide PW-MRI rCBF change showed poor sensitivity and specificity for detecting change in SPECT rCBF. SPECT and PW-MRI rCBF had stronger correlation and smaller bias in unilateral stenosis than with bilateral stenosis. Conclusion: Systematic bias between techniques limits interchange- ability in cerebrovascular reserve measurement in patients with cerebrovascular stenosis.

Share and Cite:

S. McSorley, K. Dani, J. Patterson, D. Brennan, D. Hadley and K. Muir, "Comparison of Perfusion Weighted Magnetic Resonance Imaging and Single Photon Emission Computed Tomography for Assessment of Cerebrovascular Reserve in Symptomatic Carotid Territory Stenosis," Open Journal of Radiology, Vol. 2 No. 3, 2012, pp. 68-76. doi: 10.4236/ojrad.2012.23013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. J. Klijn and L. J. Kappelle, “Haemodynamic Stroke: Clinical Features, Prognosis and Management,” The Lancet Neurology, Vol. 9, No. 10, 2010, pp. 1008-1017. doi:10.1016/S1474-4422(10)70185-X
[2] E. Nemoto, H. Yonas, H. Kuwabara, et al., “Identification of Haemodynamic Compromise by Cerebrovascular Reserve and Oxygen Extraction Fraction in Occlusive Vascular Disease,” Journal of Cerebral Blood Flow & Metabolism, Vol. 24, 2004, pp. 1081-1089. doi:10.1097/01.WCB.0000125887.48838.37
[3] F. J. Guckel, G. Brix, P. Schmiedek, et al., “Cerebrovascular Reserve Capacity in Patients with Occlusive Cerebrovascular Disease: Assessment with Dynamic Susceptibility Contrast-Enhanced MR Imaging and the Acetazolamide Stimulation Test,” Radiology, Vol. 201, No. 2, 1996, pp. 405-412.
[4] C. P. Derdeyn, T. O. Videen, K. D. Yundt, et al., “Variability of Cerebral Blood Volume and Oxygen Extraction: Stages of Cerebral Haemodynamic Impairment Revisited,” Brain, Vol. 125, No. 3, 2002, pp. 595-607. doi:10.1093/brain/awf047
[5] K. Ogasawara, A. Ogawa and T. Yoshimoto, “Cerebrovascular Reactivity to Acetazolamide and Outcome in Patients with Symptomatic Internal Carotid or Middle Cerebral Artery Ccclusion: A Xenon-133 Single-Photon Emission Computed Tomography Study,” Stroke, Vol. 33, 2002, pp. 1857-1862. doi:10.1161/01.STR.0000019511.81583.A8
[6] T. Hiranao, K. Minematsu, Y. Hasegawa, et al., “Acetazolamide Reactivity on 123I-IMP Single Photon Emission Computed Tomography in Patients with Major Cerebral Artery Occlusive Disease: Correlation with Positron Emission Tomography Parameters,” Journal of Cerebral Blood Flow & Metabolism, Vol. 14, 1994, pp. 763-770. doi:10.1038/jcbfm.1994.97
[7] J. Knop, A. Thie, C. Fuchs, et al., “99mTc-HMPAOSPECT with Acetazolamide Challenge to Detect Hemodynamic Compromise in Occlusive Cerebrovascular Disease,” Stroke, Vol. 23, 1992, pp. 1733-1742. doi:10.1161/01.STR.23.12.1733
[8] J. C. Masdeu, C. M. Brass, B. C. Holman, et al., “Brain Single-Photon Emission Computed Tomography,” Neurology, Vol. 44, No. 10, 1994, pp. 1970-1977. doi:10.1212/WNL.44.10.1970
[9] F. Calamante, D. Thomas, G. Pell, et al., “Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques,” Journal of Cerebral Blood Flow & Metabolism, Vol. 19, 1999, pp. 701-735. doi:10.1097/00004647-199907000-00001
[10] J. R. Petrella and J. M. Provenzale, “MR Perfusion Imaging of the Brain: Techniques and Applications,” American Journal of Roentgenology, Vol. 175, 2000, pp. 207-219.
[11] M. Wintermark, M. Sesay, E. Barbier, et al., “Comparative Overview of Brain Perfusion Imaging Techniques,” Stroke, Vol. 36, 2005, pp. e83-e99. doi:10.1161/01.STR.0000177884.72657.8b
[12] T. Ernst, L. Chang, L. Itti, et al., ?Correlation of Regional Cerebral Blood Flow from Perfusion MRI and SPECT in Normal Subjects,” Magnetic Resonance Imaging, Vol. 17, No. 3, 1999, pp. 349-354. doi:10.1016/S0730-725X(98)00171-4
[13] J. Karonen, R. Vanninen, Y. Liu, et al., “Combined Diffusion and Perfusion MRI with Correlation to SinglePhoton Emission CT in Acute Ischemic Stroke,” Stroke, Vol. 30, 1999, pp. 1583-1590. doi:10.1161/01.STR.30.8.1583
[14] J. Ma, J. Mehrkens, M. Holtmannspoetter, R. Linke, et al., “Perfusion MRI before and after Acetazolamide Administration for Assessment of Cerebrovascular Reserve Capacity in Patients with Symptomatic Internal Carotid Artery (ICA) Occlusion: Comparison with 99mTc-ECD SPECT,” Neuroradiology, Vol. 49, No. 4, 2007, pp. 317326. doi:10.1007/s00234-006-0193-x
[15] R. P. Bokkers, J. P. Bremner, B. N. van Berckel, et al., “Arterial Spin Labelling Perfusion MRI at Multiple Delay Times: A Correlative Study with H215O Positron Emission Tomography in Patients with Symptomatic Carotid Territory Stenosis,” Journal of Cerebral Blood Flow & Metabolism, Vol. 30, 2010, pp. 222-229. doi:10.1038/jcbfm.2009.204
[16] P. A. Barber, A. M. Demchuk, J. Zhang, et al., “Validity and Reliability of a Quantitative Computed Tomography Score in Predicting Outcome of Hyperacute Stroke before Thrombolytic Therapy,” Lancet, Vol. 355, No. 9216, 2000, pp. 1670-1674. doi:10.1016/S0140-6736(00)02237-6
[17] L. Ostergaard, R. Weisskoff, D. Chesler, et al., “High Resolution Measurement of Cerebral Blood Flow Using Intravascular Tracer Bolus Passages. Part I: Mathematical Approach and Statistical Analysis,” Magnetic Resonance in Medicine, Vol. 36, No. 5, 1996, pp. 715-725. doi:10.1002/mrm.1910360510
[18] L. Ostergaard, A. Sorensen, K. Kwong, et al., “High Resolution Measurement of Cerebral Blood Flow Using Intravascular Tracer Bolus Passages. Part II: Experimental Comparison and Preliminary Results,” Magnetic Resonance in Medicine, Vol. 36, No. 5, 1996, pp. 726736. doi:10.1002/mrm.1910360511
[19] J. M. Bland and D. G. Altman, “Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement,” Lancet, Vol. 327, No. 8476, 1986, pp. 307-310. doi:10.1016/S0140-6736(86)90837-8
[20] S. Kuroda, K. Houkin, H. Kamiyama, et al., “Long-Term Prognosis of Medically Treated Patients with Internal Carotid or Middle Cerebral Artery Occlusion: Can Acetazolamide Test Predict It?” Stroke, Vol. 32, 2001, pp. 2110-2116. doi:10.1161/hs0901.095692
[21] F. Calamante, D. G. Gadian and A. Connelly, “Quantification of Perfusion Using Bolus Tracking Magnetic Resonance Imaging in Stroke: Assumptions, Limitations, and Potential Implications for Clinical Use,” Stroke, Vol. 33, 2002, pp. 1146-1151. doi:10.1161/01.STR.0000014208.05597.33
[22] O. Wu, L. Ostergaard, R. M. Weisskoff, T. Benner, et al., “Tracer Arrival Timing-Insensitive Technique for Estimating Flow in MR Perfusion-Weighted Imaging Using Singular Value Decomposition with a Block-Circulant Deconvolution Matrix,” Magnetic Resonance in Medicine, Vol. 50, No. 1, 2003, pp. 164-174. doi:10.1002/mrm.10522
[23] D. Bonekamp, M. Degaonkar and P. B. Barker, “Quantitative Cerebral Blood Flow in Dynamic Susceptibility Contrast MRI Using Total Cerebral Flow from Phase Contrast Magnetic Resonance Angiography,” Magnetic Resonance in Medicine, Vol. 66, No. 1, 2011, pp. 57-66. doi:10.1002/mrm.22776
[24] H. Tan, J. A. Maldjian, J. M. Pollock, et al., “A Fast, Effective Filtering Method for Improving Clinical Pulsed Arterial Spin Labelling MRI,” Journal of Magnetic Resonance Imaging, Vol. 29, No. 5, 2009, pp. 1134-1139. doi:10.1002/jmri.21721
[25] K. Kikuchi, K. Murase, H. Miki, et al., “Measurement of Cerebral Hemodynamics with Perfusion-Weighted MR Imaging: Comparison with Preand Post-Acetazolamide 133Xe-SPECT in Occlusive Carotid Disease,” American Journal of Neuroradiology, Vol. 22, 2001, pp. 248-254.
[26] N. Lassen, A. Andersen, L. Friberg, et al., “The Retention of [99mTc]-d,l-HM-PAO in the Human Brain after Intravascular Bolus Injection: A Kinetic Analysis,” Journal of Cerebral Blood Flow & Metabolism, Vol. 8, 1988, pp. S13-S22. doi:10.1038/jcbfm.1988.28

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.