Photonic Crystal Based Direct and Inverse Heterostructures by Colloidal Self-Assembly

DOI: 10.4236/opj.2012.223037   PDF   HTML   XML   4,575 Downloads   7,676 Views   Citations


Photonic crystal heterostructures containing two materials and/or two lattice constants are synthesized using the colloids of polystyrene and polymethyl methacrylate by a self-assembling technique. These direct heterostructures with double stop band are infiltrated with zinc oxide by sol-gel method, followed by the removal of the original polymer template by a wet-etching process to result in inverse heterostructures made of zinc oxide. A red shift in the wavelength of stop bands is observed when the crystal is infiltrated with zinc oxide and a blue shift after inversion, in concurrence with the changes in the effective index of the structure. The stop band is also calculated to extract the number of layers and the extinction co-efficient contributing to the heterostructure. This structure made by a room-temperature low-cost technique produces a sparsely-filled zinc oxide crystal with a single refractive index but containing two different periodicities in a layered arrangement that can be used as a lab-on-a-chip for dual- or multi-wavelength sensing applications.

Share and Cite:

S. Kedia, M. Reddy and R. Vijaya, "Photonic Crystal Based Direct and Inverse Heterostructures by Colloidal Self-Assembly," Optics and Photonics Journal, Vol. 2 No. 3A, 2012, pp. 242-248. doi: 10.4236/opj.2012.223037.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. H. Kim, S. H. Kim, W. C. Jeong and S. M. Yang, “Low-threshold Lasing in 3D Dye-doped Photonic Crystals Derived from Colloidal Self-assemblies,” Chemical Materials, Vol. 21, No. 20, 2009, pp. 4993-4999. doi:10.1021/cm9026144
[2] A. Di Falco, L. O’Faolain and T. F. Krauss, “Chemical Sensing in Slotted Photonic Crystal Heterostructure Cavities,” Ap-plied Physics Letters, Vol. 94, 2009, pp. 063503-1-3. doi:10.1063/1.3079671
[3] B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka and S. Noda, “Multichannel Add/drop Filter Based on In-plane Hetero Photonic Crystals,” Journal of Lightwave Technology, Vol. 23, No. 3, 2005, pp. 1449-1455. doi:10.1109/JLT.2004.841458
[4] E. Schonbrun, Q. Wu, W. Park, T. Yamashita and C. J. Summers, “Polarization Beam Splitter Based on a Photonic Crystal Heterostruture,” Optics Letters, Vol. 31, No. 21, 2006, pp. 3104-3106. doi:10.1364/OL.31.003104
[5] B. S. Song, S. Noda, T. Asano and Y. Akahane, “Ultra-high-Q Photonic Double-heterostrucure Nanocavity,” Nature Ma-terials, Vol. 4, No. 3, 2005, pp. 207-210. doi:10.1038/nmat1320
[6] R. Rengarajan, P. Jiang, D. C. Larrabee, V. L. Colvin and D. M. Mittleman, “Colloidal Photonic Superlattices,” Physical Review B, Vol. 64, No. 20, 2001, pp. 205103- 1-4. doi:10.1103/PhysRevB.64.205103
[7] K. Wostyn, Y. Zhao, G. de. Schaetzen, L. Hellemans, N. Matsuda, K. Clays and A. Persoons, “Insertion of a Two-dimensional Cavity into a Self-assembled Colloidal Crystal,” Langmuir, Vol. 19, No. 10, 2003, pp. 4465-4468. doi:10.1021/la0341916
[8] G. Q. Liu, Z. S. Wang, Y. B. Liao, H. H. Hu and Y. Chen, “High-quality Photonic Crystal Heterostructures Fabricated by a Modified Self-assembly Method,” Applied Optics, Vol. 48, No.3, 2009, pp. 2480-2484. doi:10.1364/AO.48.002480
[9] Q. Yan, X. S. Zhao and Z. Zhou, “Fabrication of Colloidal Crystal Heterostructure Using a Horizontal Deposition Method,” Journal of Crystal Growth, Vol. 288, 2006, pp. 205-208. doi:10.1016/j.jcrysgro.2005.12.028
[10] S-H.Kim, H.S.Park, J.H.Choi, J.W.Shim and S-M.Yang, “Photonic Crystals: Integration of Colloidal Photonic Crystals towards Miniaturized Spectrometers,” Advanced Materials, Vol. 22, No. 9, 2010, pp. 946-950. doi:10.1002/adma.200902456
[11] Q. Yan, Z. Zhou and X. S. Zhao, “Inward-growing Self-assembly of Colloidal Crystal Films on Horizontal Substrates,” Langmuir, Vol. 21, No. 7, 2005, pp. 3158- 3164. doi:10.1021/la047337p
[12] S. Kedia, R. Vijaya, A. K. Ray and S. Sinha, “Photonic Stop Band Effect in ZnO Inverse Photonic Crystal,” Optical Materials, Vol. 33, No. 3, 2011, pp. 466-474. doi:10.1016/j.optmat.2010.10.020
[13] O. D. Velev and E. W. Kaler, “Structured Porous Materials via Colloidal Crystal Templating: from Inorganic Oxides to Metals” Advanced Materials, Vol. 12, No. 7, 2000, pp. 531-534. doi:10.1002/(SICI)1521-4095(200004)12:7<531::AID-ADMA531>3.0.CO;2-S
[14] Z. Zhou and X. S. Zhao, “Opal and Inverse Opal Fabricated With a Flow-controlled Vertical Deposition Me- thod,” Langmuir, Vol. 21, No. 10, 2005, pp. 4717- 4723. doi:10.1021/la046775t
[15] B. Cheng, P. Ni, C. Jin, Z. Li, D. Zhang, P. Dong and X. Guo, “More Direct Evidence of the fcc Arrangement For Artificial Opal,” Optics Communications, Vol. 170, No. 1-3, 1999, pp. 41-46. doi:10.1016/S0030-4018(99)00434-4
[16] G. Q. Liu, Y. H. Ji, Y. Y. Nie, Y. Chen and H. H. Hu, “Structural and Optical Quality of Binary Photonic Crystal Heterostructures Fabricated By The Modified Self- assembly Method,” Journal of Modern Optics, Vol. 56, No. 15, 2009, pp. 1643-1648. doi:10.1080/09500340903267827
[17] N. Stefanou, V. Yannopapas and A. Modinos, “Heteros- tructures of Photonic Crystals: Frequency Bands and Trans-mission Coefficient,” Computer Physics Communication, Vol. 113, 1998, pp. 49-77. doi:10.1016/S0010-4655(98)00060-5
[18] N. Stefanou, V. Yannopapas and A. Modinos, “MUL- TEM 2: A New Version of the Program for Transmission and Band-structure Calculations of Photonic Crystals,” Computer Physics Communication, Vol. 132, 2000, pp. 189-196. doi:10.1016/S0010-4655(00)00131-4
[19] M. Bardosova, M. E. Pemble, I. M. Povey, R. H. Tredgold and D. E. Whitehead, “Enhanced Bragg Reflections from Size-matched Heterostructure Photonic Crystal Thin Films Prepared by the Langmuir-Blodgett Method,” Applied Physics Letters, Vol. 89, No. 9, 2006, pp. 093116-1-3. doi:10.1063/1.2339031

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.